ALMA 26 Arcmin2 Survey of GOODS-S at One Millimeter (ASAGAO): Average Morphology of High-z Dusty Star-forming Galaxies in an Exponential Disk (n ≃ 1)

We present morphological properties of dusty star-forming galaxies at z=1-3 determined with high-resolution (FWHM~0"19) Atacama Large Milllimeter/submilimeter Array (ALMA) 1-mm band maps of our ASAGAO survey covering a 26-arcmin^2 area in GOODS-S. In conjunction with the ALMA archival data, the present sample consists of 42 ALMA sources with a wide rest-frame far-infrared (FIR) luminosity L_FIR range of ~10^11-10^13 Lo. To obtain an average rest-frame FIR profile, we perform individual measurements and careful stacking of the ALMA sources using the uv-visibility method that includes positional-uncertainty and smoothing-effect evaluations through Monte-Carlo simulations. We find that the dusty star-forming galaxies have the average FIR-wavelength Sersic index and effective radius of n_FIR=1.2+/-0.2 and R_e,FIR=1.0-1.3 kpc, respectively, additionally with a point source at the center, indicative of the existence of AGN. The average FIR profile agrees with a morphology of an exponential-disk clearly distinguished from a spheroidal profile (Sersic index of 4). We also examine the rest-frame optical Sersic index n_opt and effective radius R_e,opt with the deep Hubble Space Telescope (HST) images. Interestingly, we obtain n_opt=0.9+/-0.3 (~n_FIR) and R_e,opt=3.2+/-0.6 kpc (>R_e,FIR), suggesting that the FIR-emitting disk is embedded within a larger stellar disk. The rest-frame UV and FIR data of HST and ALMA provide us a radial surface density profile of the total star-formation rate (SFR), where the FIR SFR dominates over the UV SFR at the center. Under the simple assumption of a constant SFR, a compact stellar distribution found in z~1-2 compact quiescent galaxies (cQGs) is well reproduced, while a spheroidal stellar morphology of cQGs (n_opt=4) cannot, suggestive of other important mechanisms such as dynamical dissipation.

[1]  David Crampton,et al.  The Canada-United Kingdom Deep Submillimeter Survey. II. First Identifications, Redshifts, and Implications for Galaxy Evolution* , 1999 .

[2]  N. Hathi,et al.  Starburst Intensity Limit of Galaxies at z ≃ 5–6 , 2007, 0709.0520.

[3]  J. Conway,et al.  Stacking of large interferometric data sets in the image- and uv-domain - a comparative study , 2014, 1411.1410.

[4]  R. Bouwens,et al.  The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223 , 2016, 1607.03808.

[5]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[6]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[7]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[8]  J. Sérsic,et al.  Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[9]  Henry C. Ferguson,et al.  The size evolution of high-redshift galaxies , 2004 .

[10]  C. Steinhardt,et al.  A Massive Dead Disk Galaxy in the Young Universe , 2017, Nature.

[11]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[12]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[13]  A. Dekel,et al.  An analytic solution for the minimal bathtub toy model: challenges in the star formation history of high-z galaxies , 2014, 1402.2283.

[14]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[15]  Reinhard Genzel,et al.  Spatially Resolved Millimeter Interferometry of SMM J02399–0136: A Very Massive Galaxy at z = 2.8 , 2002, astro-ph/0210449.

[16]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[17]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[18]  M. Oguri,et al.  THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.

[19]  J. Trump,et al.  SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT z ∼ 2.5: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2016, 1607.01011.

[20]  D. Elbaz,et al.  VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES , 2016, The Astrophysical Journal.

[21]  J. Brinchmann,et al.  Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys—IV. Influence of mergers in the evolution of faint field galaxies from z∼1 , 1999, astro-ph/9909211.

[22]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[23]  Edinburgh,et al.  THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES , 2014, The Astrophysical Journal.

[24]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[25]  D. Elbaz,et al.  Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr , 2016, 1601.04226.

[26]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[27]  S. Wuyts,et al.  Rotating Starburst Cores in Massive Galaxies at z = 2.5 , 2017, 1703.10197.

[28]  David Elbaz,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SURVEY DESCRIPTION , 2016, 1607.06768.

[29]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[30]  M. Ouchi,et al.  Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0–6 Revealed with 1034 ALMA Sources , 2017, 1703.02138.

[31]  John A. Peacock,et al.  The Parkes selected regions: powerful radio galaxies and quasars at high redshifts , 1986 .

[32]  D.Lutz,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES* , 2012 .

[33]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[34]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[35]  R. B. Barreiro,et al.  Planck early results. XXI. Properties of the interstellar mediumin the Galactic plane , 2011, 1101.2032.

[36]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[37]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[38]  J. Dunlop,et al.  SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy , 2016, 1607.02331.

[39]  C. C. Chen,et al.  KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES , 2016, The Astrophysical Journal.

[40]  J. Kneib,et al.  Molecular gas content in strongly lensed z similar to 1.5-3 star-forming galaxies with low infrared luminosities , 2014, 1408.0816.

[41]  V. A. Bruce,et al.  The properties of (sub-)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-south , 2012, 1208.3464.

[42]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[43]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[44]  Edinburgh,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES , 2014, 1412.0668.

[45]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[46]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[47]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[48]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[49]  A. M. Swinbank,et al.  The LABOCA survey of the Extended Chandra Deep Field-South: clustering of submillimetre galaxies , 2011, 1112.0321.

[50]  M. Oguri,et al.  Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data , 2017, 1710.07301.

[51]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[52]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[53]  D. Meier,et al.  ALMA OBSERVATIONS OF THE SUBMILLIMETER DENSE MOLECULAR GAS TRACERS IN THE LUMINOUS TYPE-1 ACTIVE NUCLEUS OF NGC 7469 , 2015, 1508.05946.

[54]  S. E. Persson,et al.  THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5 , 2016, 1608.07579.

[55]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[56]  Research Center for the Early Universe,et al.  COMPACT STARBURSTS IN z ∼ 3 ?> –6 SUBMILLIMETER GALAXIES REVEALED BY ALMA , 2014, The Astrophysical Journal.

[57]  F. Walter,et al.  AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING , 2015, 1504.04376.

[58]  N. Hathi,et al.  Starburst Intensity Limit of Galaxies at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[O , 2008 .

[59]  D. Eisenstein,et al.  MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES , 2010, 1010.0675.

[60]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[61]  Itziar Aretxaga,et al.  The SCUBA HAlf Degree Extragalactic Survey – VI. 350-μm mapping of submillimetre galaxies , 2008 .

[62]  Robert C. Kennicutt,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[63]  K. Ohta,et al.  OPTICAL–INFRARED PROPERTIES OF FAINT 1.3 mm SOURCES DETECTED WITH ALMA , 2015, 1508.00644.

[64]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[65]  J. Dunlop,et al.  Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.

[66]  H. Rix,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: SOURCE CATALOG AND MULTIPLICITY , 2013, 1304.4266.

[67]  V. Springel,et al.  The formation of massive, compact galaxies at z = 2 in the Illustris simulation , 2014, 1411.0667.

[68]  J. Dunlop,et al.  ALMA 26 arcmin2 Survey of GOODS-S at One-millimeter (ASAGAO): X-Ray AGN Properties of Millimeter-selected Galaxies , 2017, 1712.03350.

[69]  M. Dickinson,et al.  “Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6 , 2017, 1703.05281.

[70]  S. Muller,et al.  UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data , 2014, 1401.4984.

[71]  J. Dunlop,et al.  A near-infrared morphological comparison of high-redshift submillimetre and radio galaxies: massive star-forming discs versus relaxed spheroids , 2010, 1005.5176.

[72]  B. Holwerda,et al.  Herschel/SPIRE observations of the dusty disk of NGC 4244 , 2012, 1204.2936.

[73]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[74]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[75]  H. Rix,et al.  A massive galaxy in its core formation phase three billion years after the Big Bang , 2014, Nature.