Superconducting microwave magnetometer for absolute flux detection

Simon Günzler, ∗ Patrick Winkel, ∗ Dennis Rieger, Kiril Borisov, Martin Spiecker, Alexey V. Ustinov, 2, 4 Ioan M. Pop, 2, 3 and Wolfgang Wernsdorfer 2, 3, 5, † Institute for Quantum Materials and Technology, Karlsruher Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany Russian Quantum Center, National University of Science and Technology MISIS, 119049 Moscow, Russia Institut Néel, CNRS and Université Joseph Fourier, Grenoble, France (Dated: July 14, 2021)

[1]  M. Weides,et al.  State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform , 2019, FIFTH INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES (ICQT-2019).

[2]  A. F. Kockum,et al.  Characterizing decoherence rates of a superconducting qubit by direct microwave scattering , 2019, npj Quantum Information.

[3]  W. Wernsdorfer,et al.  Implementation of a Transmon Qubit Using Superconducting Granular Aluminum , 2019, Physical Review X.

[4]  R. Barends,et al.  Electric field spectroscopy of material defects in transmon qubits , 2019, npj Quantum Information.

[5]  W. Wernsdorfer,et al.  Onset of phase diffusion in high kinetic inductance granular aluminum micro-SQUIDs , 2019, Superconductor Science and Technology.

[6]  C. K. Andersen,et al.  Quantum Versus Classical Switching Dynamics of Driven Dissipative Kerr Resonators , 2019, Physical Review Applied.

[7]  O. Astafiev,et al.  Two-Level System as a Quantum Sensor for Absolute Calibration of Power , 2019, Physical Review Applied.

[8]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[9]  L. Frunzio,et al.  Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons , 2019, Physical Review Applied.

[10]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[11]  I. Pop,et al.  Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors , 2018, Physical Review Applied.

[12]  M. Manfra,et al.  Evidence of topological superconductivity in planar Josephson junctions , 2018, Nature.

[13]  Joseph P. Heremans,et al.  Atomic layer deposition of titanium nitride for quantum circuits , 2018, Applied Physics Letters.

[14]  L. Kouwenhoven,et al.  Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions , 2018, Nature Communications.

[15]  C. K. Andersen,et al.  Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit , 2018, Nature Communications.

[16]  M. Devoret,et al.  Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt , 2018, Physical Review Applied.

[17]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[18]  J. Bylander,et al.  High Kinetic Inductance NbN Nanowire Superinductors , 2018, Physical Review Applied.

[19]  M. Weides,et al.  Local sensing with the multilevel ac Stark effect , 2018, Physical Review A.

[20]  M. Weides,et al.  An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts , 2017, 1706.06424.

[21]  H. Meyer,et al.  A new family of field-stable and highly sensitive SQUID current sensors based on sub-micrometer cross-type Josephson junctions , 2017, 1706.05189.

[22]  J. Pekola,et al.  Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction , 2017, Scientific Reports.

[23]  Teruyoshi Sasayama,et al.  Biosensing utilizing magnetic markers and superconducting quantum interference devices , 2017 .

[24]  D. Koelle,et al.  NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition , 2016, 1610.09150.

[25]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[26]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[27]  D. Koelle,et al.  Nb nano superconducting quantum interference devices with high spin sensitivity for operation in magnetic fields up to 0.5 T , 2013, 1304.7584.

[28]  W. Goubau GEOPHYSICAL APPLICATIONS OF SQUIDS , 2013 .

[29]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[30]  A. Ustinov,et al.  Strain Tuning of Individual Atomic Tunneling Systems Detected by a Superconducting Qubit , 2012, Science.

[31]  T. Umeda,et al.  Electron spin resonance detected by a superconducting qubit , 2012, 1205.5659.

[32]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[33]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[34]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[35]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[36]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[37]  M. Monthioux,et al.  Carbon nanotube superconducting quantum interference device , 2006, Nature nanotechnology.

[38]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[39]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[40]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[41]  Gheorghe Stan,et al.  Critical field for complete vortex expulsion from narrow superconducting strips. , 2004, Physical review letters.

[42]  M. D. Alper,et al.  Detection of bacteria in suspension by using a superconducting quantum interference device , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Wernsdorfer,et al.  Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets , 2002, Nature.

[44]  W. Wernsdorfer,et al.  Quantum phase interference and parity effects in magnetic molecular clusters , 1999, Science.

[45]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[46]  Dominique Mailly,et al.  DC-SQUID Magnetization Measurements of Single Magnetic Particles , 1995 .

[47]  John Clarke,et al.  dc SQUID: Noise and optimization , 1977 .

[48]  R. A. Webb,et al.  Principles and methods of low-frequency electric and magnetic measurements using an rf-biased point-contact superconducting device , 1972 .

[49]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[50]  D. Cohen,et al.  MAGNETOCARDIOGRAMS TAKEN INSIDE A SHIELDED ROOM WITH A SUPERCONDUCTING POINT‐CONTACT MAGNETOMETER , 1970 .

[51]  R. W. Cohen,et al.  Superconductivity in Granular Aluminum Films , 1968 .

[52]  S. Caplan,et al.  CRITICAL-FIELD STUDY OF SUPERCONDUCTING ALUMINUM , 1965 .

[53]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[54]  M. Nabauer,et al.  Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring , 1961 .

[55]  Bascom S. Deaver,et al.  Experimental Evidence for Quantized Flux in Superconducting Cylinders , 1961 .

[56]  H. Alloul Introduction to Superconductivity , 2011 .

[57]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[58]  G L Romani,et al.  Biomagnetic instrumentation. , 1982, The Review of scientific instruments.

[59]  J. E. Zimmerman,et al.  NOISE THERMOMETRY WITH THE JOSEPHSON EFFECT. , 1971 .