Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions

We describe a method for computing the likelihood that a completion joining two contour fragments passes through any given position and orientation in the image plane, that is, a method for completing the boundaries of partially occluded objects. Like computations in primary visual cortex (and unlike all previous models of contour completion in the human visual system), our computation is Euclidean invariant. This invariance is achieved in a biologically plausible manner by representing the input, output, and intermediate states of the computation in a basis of shiftable-twistable functions. The spatial components of these functions resemble the receptive fields of simple cells in primary visual cortex. Shiftable-twistable functions on the space of positions and directions are a generalization of shiftable-steerable functions on the plane.

[1]  Lance R. Williams,et al.  Analytic solution of stochastic completion fields , 1995, Biological Cybernetics.

[2]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[3]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[5]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[6]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[7]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[9]  B. Wandell Foundations of vision , 1995 .

[10]  Lance R. Williams,et al.  Local Parallel Computation of Stochastic Completion Fields , 1997, Neural Computation.

[11]  Jack D. Cowan Neurodynamics and brain mechanisms. , 1997 .

[12]  Lance R. Williams,et al.  Computing Stochastic Completion Fields in Linear-Time Using a Resolution Pyramid , 1999, Comput. Vis. Image Underst..

[13]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[14]  GARY BLASDEL,et al.  Putative strategies of scene segmentation in monkey visual cortex , 1994, Neural Networks.

[15]  U Eysel,et al.  Neurobiology: Turning a corner in vision research , 1999, Nature.

[16]  Steven W. Zucker,et al.  Toward discrete geometric models for early vision , 1994 .

[17]  Leif H. Finkel,et al.  Salient Contour Extraction by Temporal Binding in a Cortically-based Network , 1996, NIPS.

[18]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  Eero P. Simoncelli,et al.  Steerable wedge filters for local orientation analysis , 1996, IEEE Trans. Image Process..

[22]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[23]  Lance R. Williams,et al.  Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape , 1998, Neural Computation.

[24]  E. Rolls,et al.  Cognition, Computation, and Consciousness , 1997 .

[25]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[26]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[27]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985 .

[28]  Max A. Viergever,et al.  Invertible Orientation Bundles on 2D Scalar Images , 1997, Scale-Space.