The Extinction Dynamics of Bacterial Pseudogenes

Pseudogenes are usually considered to be completely neutral sequences whose evolution is shaped by random mutations and chance events. It is possible, however, for disrupted genes to generate products that are deleterious due either to the energetic costs of their transcription and translation or to the formation of toxic proteins. We found that after their initial formation, the youngest pseudogenes in Salmonella genomes have a very high likelihood of being removed by deletional processes and are eliminated too rapidly to be governed by a strictly neutral model of stochastic loss. Those few highly degraded pseudogenes that have persisted in Salmonella genomes correspond to genes with low expression levels and low connectivity in gene networks, such that their inactivation and any initial deleterious effects associated with their inactivation are buffered. Although pseudogenes have long been considered the paradigm of neutral evolution, the distribution of pseudogenes among Salmonella strains indicates that removal of many of these apparently functionless regions is attributable to positive selection.

[1]  H. Ochman,et al.  Psi-Phi: exploring the outer limits of bacterial pseudogenes. , 2004, Genome research.

[2]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[3]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[4]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[5]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[6]  Eduardo P C Rocha,et al.  An analysis of determinants of amino acids substitution rates in bacterial proteins. , 2004, Molecular biology and evolution.

[7]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[8]  S. Casjens,et al.  Where are the pseudogenes in bacterial genomes? , 2001, Trends in microbiology.

[9]  J. Andersson,et al.  Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.

[10]  M. Huynen,et al.  Benchmarking ortholog identification methods using functional genomics data , 2006, Genome Biology.

[11]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[12]  Howard Ochman,et al.  The Emergence and Fate of Horizontally Acquired Genes in Escherichia coli , 2008, PLoS Comput. Biol..

[13]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[14]  Kei-Hoi Cheung,et al.  Pseudofam: the pseudogene families database , 2008, Nucleic Acids Res..

[15]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[16]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[17]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[18]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[19]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[20]  Masahira Hattori,et al.  Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. , 2005, Genome research.

[21]  M. Gerstein,et al.  Comparative analysis of processed pseudogenes in the mouse and human genomes. , 2004, Trends in genetics : TIG.

[22]  E. Rocha Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. , 2004, Genome research.

[23]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[24]  M. Palumbo,et al.  Widespread Antisense Transcription in Escherichia coli , 2010, mBio.

[25]  M. Nei,et al.  Pseudogenes as a paradigm of neutral evolution , 1981, Nature.

[26]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[27]  Georgios S. Vernikos,et al.  Genetic flux over time in the Salmonella lineage , 2007, Genome Biology.

[28]  Howard Ochman,et al.  The consequences of genetic drift for bacterial genome complexity. , 2009, Genome research.

[29]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[30]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[31]  H. Ochman,et al.  Gene decay in archaea. , 2007, Archaea.

[32]  Samuel A. Assefa,et al.  A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.

[33]  T. Gregory Synergy between sequence and size in Large-scale genomics , 2005, Nature Reviews Genetics.

[34]  Inna Dubchak,et al.  Trends in Prokaryotic Evolution Revealed by Comparison of Closely Related Bacterial and Archaeal Genomes , 2008, Journal of bacteriology.

[35]  Chong Su,et al.  Bacteriome.org—an integrated protein interaction database for E. coli , 2007, Nucleic Acids Res..

[36]  M. Lynch Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.

[37]  H. Ochman,et al.  Ψ-Φ: Exploring the outer limits of bacterial pseudogenes , 2004 .

[38]  Chong Su,et al.  The Modular Organization of Protein Interactions in Escherichia coli , 2009, PLoS Comput. Biol..

[39]  Emmanuelle Lerat,et al.  Recognizing the pseudogenes in bacterial genomes , 2005, Nucleic acids research.

[40]  Eduardo P C Rocha,et al.  Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes , 2006, Molecular microbiology.

[41]  M. Gerstein,et al.  Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity , 2009, BMC Genomics.

[42]  Mark Gerstein,et al.  Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation , 2006, Nucleic Acids Res..

[43]  S. Eriksson,et al.  Bacterial genome size reduction by experimental evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Parker,et al.  During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems , 2008, Cellular microbiology.

[45]  Howard Ochman,et al.  Deletional Bias across the Three Domains of Life , 2009, Genome biology and evolution.

[46]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[47]  Cristian I. Castillo-Davis,et al.  Selection for short introns in highly expressed genes , 2002, Nature Genetics.

[48]  J. Wells,et al.  Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Gerstein,et al.  Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes , 2004, Genome Biology.

[50]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[51]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[52]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[53]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[54]  Jihun Kim,et al.  The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host–cell interaction genes , 2007, Proceedings of the National Academy of Sciences.

[55]  Dan Graur,et al.  Deletions in processed pseudogenes accumulate faster in rodents than in humans , 1989, Journal of Molecular Evolution.

[56]  B. Barrell,et al.  Massive gene decay in the leprosy , 2001 .