The Extinction Dynamics of Bacterial Pseudogenes
暂无分享,去创建一个
[1] H. Ochman,et al. Psi-Phi: exploring the outer limits of bacterial pseudogenes. , 2004, Genome research.
[2] N. Moran,et al. Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.
[3] Ziheng Yang. PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.
[4] David L. Wheeler,et al. GenBank , 2015, Nucleic Acids Res..
[5] A. Emili,et al. Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.
[6] Eduardo P C Rocha,et al. An analysis of determinants of amino acids substitution rates in bacterial proteins. , 2004, Molecular biology and evolution.
[7] M. Suyama,et al. Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.
[8] S. Casjens,et al. Where are the pseudogenes in bacterial genomes? , 2001, Trends in microbiology.
[9] J. Andersson,et al. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.
[10] M. Huynen,et al. Benchmarking ortholog identification methods using functional genomics data , 2006, Genome Biology.
[11] M. Lynch,et al. The Origins of Genome Complexity , 2003, Science.
[12] Howard Ochman,et al. The Emergence and Fate of Horizontally Acquired Genes in Escherichia coli , 2008, PLoS Comput. Biol..
[13] Peer Bork,et al. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..
[14] Kei-Hoi Cheung,et al. Pseudofam: the pseudogene families database , 2008, Nucleic Acids Res..
[15] Z. Yang,et al. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.
[16] A. Emili,et al. Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.
[17] C. Stoeckert,et al. OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.
[18] B. Barrell,et al. Massive gene decay in the leprosy bacillus , 2001, Nature.
[19] Kim Rutherford,et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.
[20] Masahira Hattori,et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. , 2005, Genome research.
[21] M. Gerstein,et al. Comparative analysis of processed pseudogenes in the mouse and human genomes. , 2004, Trends in genetics : TIG.
[22] E. Rocha. Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. , 2004, Genome research.
[23] Robert C. Edgar,et al. MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.
[24] M. Palumbo,et al. Widespread Antisense Transcription in Escherichia coli , 2010, mBio.
[25] M. Nei,et al. Pseudogenes as a paradigm of neutral evolution , 1981, Nature.
[26] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[27] Georgios S. Vernikos,et al. Genetic flux over time in the Salmonella lineage , 2007, Genome Biology.
[28] Howard Ochman,et al. The consequences of genetic drift for bacterial genome complexity. , 2009, Genome research.
[29] Matthew R. Pocock,et al. The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.
[30] Rekha R Meyer,et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.
[31] H. Ochman,et al. Gene decay in archaea. , 2007, Archaea.
[32] Samuel A. Assefa,et al. A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.
[33] T. Gregory. Synergy between sequence and size in Large-scale genomics , 2005, Nature Reviews Genetics.
[34] Inna Dubchak,et al. Trends in Prokaryotic Evolution Revealed by Comparison of Closely Related Bacterial and Archaeal Genomes , 2008, Journal of bacteriology.
[35] Chong Su,et al. Bacteriome.org—an integrated protein interaction database for E. coli , 2007, Nucleic Acids Res..
[36] M. Lynch. Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.
[37] H. Ochman,et al. Ψ-Φ: Exploring the outer limits of bacterial pseudogenes , 2004 .
[38] Chong Su,et al. The Modular Organization of Protein Interactions in Escherichia coli , 2009, PLoS Comput. Biol..
[39] Emmanuelle Lerat,et al. Recognizing the pseudogenes in bacterial genomes , 2005, Nucleic acids research.
[40] Eduardo P C Rocha,et al. Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes , 2006, Molecular microbiology.
[41] M. Gerstein,et al. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity , 2009, BMC Genomics.
[42] Mark Gerstein,et al. Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation , 2006, Nucleic Acids Res..
[43] S. Eriksson,et al. Bacterial genome size reduction by experimental evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[44] M. Parker,et al. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems , 2008, Cellular microbiology.
[45] Howard Ochman,et al. Deletional Bias across the Three Domains of Life , 2009, Genome biology and evolution.
[46] G. Church,et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.
[47] Cristian I. Castillo-Davis,et al. Selection for short introns in highly expressed genes , 2002, Nature Genetics.
[48] J. Wells,et al. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[49] M. Gerstein,et al. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes , 2004, Genome Biology.
[50] R. Wilson,et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.
[51] Julian Parkhill,et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.
[52] T. Sicheritz-Pontén,et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.
[53] Martin Vingron,et al. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..
[54] Jihun Kim,et al. The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host–cell interaction genes , 2007, Proceedings of the National Academy of Sciences.
[55] Dan Graur,et al. Deletions in processed pseudogenes accumulate faster in rodents than in humans , 1989, Journal of Molecular Evolution.
[56] B. Barrell,et al. Massive gene decay in the leprosy , 2001 .