Local and pollution error estimation for finite element approximations of elliptic boundary value problems
暂无分享,去创建一个
[1] L. Wahlbin. On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .
[2] Leszek Demkowicz,et al. Adaptive methods for problems in solid and fluid mechanics , 1986 .
[3] A. H. Schatz,et al. Interior maximum-norm estimates for finite element methods, part II , 1995 .
[4] J. Oden,et al. A procedure for a posteriori error estimation for h-p finite element methods , 1992 .
[5] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .
[6] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[7] J. Tinsley Oden,et al. A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis , 1993 .
[8] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[9] Ivo Babuška,et al. A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .
[10] Ivo Babuška,et al. Accuracy estimates and adaptive refinements in finite element computations , 1986 .
[11] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[12] R. Cottle. Manifestations of the Schur complement , 1974 .
[13] Ivo Babuška,et al. Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .
[14] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .