Local and pollution error estimation for finite element approximations of elliptic boundary value problems

This paper addresses the issue of local elementwise error estimation of finite element approximations of elliptic boundary value problems. The characterization of element error as local and pollution error component is presented and the relationship between energy norms of local errors and that predicted by means of a posteriori error estimators is investigated. In addition, techniques for calculating element indicators of local error, pollution error, and other error indicators are presented.

[1]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[2]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[3]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[4]  J. Oden,et al.  A procedure for a posteriori error estimation for h-p finite element methods , 1992 .

[5]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[6]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[7]  J. Tinsley Oden,et al.  A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis , 1993 .

[8]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[9]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[10]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[11]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[12]  R. Cottle Manifestations of the Schur complement , 1974 .

[13]  Ivo Babuška,et al.  Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .

[14]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .