Finite deformation plasticity for composite structures: Computational models and adaptive strategies

We develop computational models and adaptive modeling strategies for obtaining an approximate solution to a boundary value problem describing the finite deformation plasticity of heterogeneous structures. A nearly optimal mathematical model consists of an averaging scheme based on approximating eigenstrains and elastic concentration factors in each micro phase by a constant in the portion of the macro-domain where modeling errors are small, whereas elsewhere, a more detailed mathematical model based on a piecewise constant approximation of eigenstrains and elastic concentration factors is utilized. The methodology is developed within the framework of ‘statistically homogeneous’ composite material and local periodicity assumptions.

[1]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[2]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[3]  Sia Nemat-Nasser,et al.  Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites , 1986 .

[4]  R. L. Mallett,et al.  Stress Analysis for Kinematic Hardening in Finite-Deformation Plasticity. , 1981 .

[5]  Alexander L. Kalamkarov,et al.  Composite and Reinforced Elements of Construction , 1992 .

[6]  Jacob Fish,et al.  Multiscale finite element method for a locally nonperiodic heterogeneous medium , 1993 .

[7]  Jan Drewes Achenbach,et al.  Matrix cracking in transversely loaded fiber composites with compliant interphases , 1992 .

[8]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[9]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[10]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[11]  J. Willis,et al.  On methods for bounding the overall properties of nonlinear composites , 1991 .

[12]  Miranda Guedes,et al.  Nonlinear computational models for composite materials using homogenization. , 1990 .

[13]  Jacob Aboudi,et al.  A continuum theory for fiber-reinforced elastic-viscoplastic composites , 1982 .

[14]  P. Ponte Castañeda,et al.  New variational principles in plasticity and their application to composite materials , 1992 .

[15]  George J. Dvorak,et al.  Bounds on overall instantaneous properties of elastic-plastic composites , 1988 .

[16]  S. Nemat-Nasser On Finite Plastic Flow of Crystalline Solids and Geomaterials , 1983 .

[17]  George J. Dvorak,et al.  Large elastic-plastic deformations of fibrous metal matrix composites , 1991 .

[18]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[19]  T. Hughes Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity , 1984 .

[20]  Dominique Leguillon,et al.  Homogenized constitutive law for a partially cohesive composite material , 1982 .

[21]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[22]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[23]  F. Léné,et al.  Damage constitutive relations for composite materials , 1986 .

[24]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[25]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[26]  J. Fish,et al.  Microscale reduction error indicators and estimators for a periodic heterogeneous medium , 1994, Computational Mechanics.

[27]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[29]  S. Jansson,et al.  Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure , 1992 .

[30]  Siavouche Nemat-Nasser,et al.  Theoretical foundation for large-scale computations for nonlinear material behavior , 1984 .

[31]  Hans-Werner Ziegler A Modification of Prager's Hardening Rule , 1959 .

[32]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .