Computerized lung nodule detection on thoracic CT images: combined rule-based and statistical classifier for false-positive reduction

We are developing a computer-aided diagnosis (CAD) system for lung nodule detection on thoracic helical computed tomography (CT) images. In the first stage of this CAD system, lung regions are identified and suspicious structures are segmented. These structures may include true lung nodules or normal structures that consist mainly of vascular structures. We have designed rule-based classifiers to distinguish nodules and normal structures using 2D and 3D features. After rule-based classification, linear discriminant analysis (LDA) is used to further reduce the number of false positive (FP) objects. We have performed a preliminary study using CT images from 17 patients with 31 lung nodules. When only LDA classification was applied to the segmented objects, the sensitivity was 84% (26/31) with 2.53 (1549/612) FP objects per slice. When the LDA followed the rule-based classifier, the number of FP objects per slice decreased to 1.75 (1072/612) at the same sensitivity. These preliminary results demonstrate the feasibility of our approach for nodule detection and FP reduction on CT images. The inclusion of rule-based classification leads to an improvement in detection accuracy for the CAD system.