Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators

This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in Chen et al. (2011) and Pascal et al. (2013), based on Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size adequacy to the classical sample covariance matrix estimator. We consider here the case of i.i.d. elliptical zero mean samples in the regime where both sample and population sizes are large. We demonstrate that, under this setting, the estimators under study asymptotically behave similar to well-understood random matrix models. This characterization allows us to derive optimal shrinkage strategies to estimate the population scatter matrix, improving significantly upon the empirical shrinkage method proposed in Chen et al. (2011).

[1]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[2]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[3]  Romain Couillet,et al.  Robust Estimates of Covariance Matrices in the Large Dimensional Regime , 2012, IEEE Transactions on Information Theory.

[4]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[5]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[6]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[7]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[8]  Yuri I. Abramovich,et al.  Diagonally Loaded Normalised Sample Matrix Inversion (LNSMI) for Outlier-Resistant Adaptive Filtering , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[9]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[10]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[11]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[12]  Matthew R. McKay,et al.  Statistical Linkage Analysis of Substitutions in Patient-Derived Sequences of Genotype 1a Hepatitis C Virus Nonstructural Protein 3 Exposes Targets for Immunogen Design , 2014, Journal of Virology.

[13]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[14]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[15]  Xavier Mestre,et al.  On the Asymptotic Behavior of the Sample Estimates of Eigenvalues and Eigenvectors of Covariance Matrices , 2008, IEEE Transactions on Signal Processing.

[16]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[17]  Romain Couillet,et al.  Robust M-Estimation for Array Processing: A Random Matrix Approach , 2012, ArXiv.

[18]  J. H. Steiger Tests for comparing elements of a correlation matrix. , 1980 .

[19]  David E. Tyler,et al.  Redescending $M$-Estimates of Multivariate Location and Scatter , 1991 .

[20]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Daniel Pérez Palomar,et al.  Performance Analysis and Optimal Selection of Large Minimum Variance Portfolios Under Estimation Risk , 2011, IEEE Journal of Selected Topics in Signal Processing.

[23]  Xiuyuan Cheng,et al.  Marchenko-Pastur Law for Tyler's and Maronna's M-estimators , 2014 .

[24]  Xavier Mestre,et al.  Modified Subspace Algorithms for DoA Estimation With Large Arrays , 2008, IEEE Transactions on Signal Processing.

[25]  J. Bouchaud,et al.  RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .

[26]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[27]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[28]  Todd M. Allen,et al.  Coordinate linkage of HIV evolution reveals regions of immunological vulnerability , 2011, Proceedings of the National Academy of Sciences.

[29]  A. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional , 2011 .

[30]  Romain Couillet,et al.  The random matrix regime of Maronna's M-estimator with elliptically distributed samples , 2013, J. Multivar. Anal..

[31]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[32]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[33]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .