mm-Wave Highly-Linear Broadband Power Amplifiers

In Chap. 1 the system level requirements in terms of TX bandwidth and linearity were addressed. Chapter 2 introduced the design challenges of deep-scaled CMOS actives and passives components and in Chap. 3 several gain-bandwidth enhancement techniques were considered. This chapter brings these results together and applies them to mm-Wave broadband CMOS power amplifiers (PAs) design.

[1]  Pietro Andreani,et al.  A high-swing complementary class-C VCO , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[2]  Patrick Reynaert,et al.  A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[3]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[4]  Patrick Reynaert,et al.  Dual-Mode CMOS Doherty LTE Power Amplifier With Symmetric Hybrid Transformer , 2015, IEEE Journal of Solid-State Circuits.

[5]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Dongsu Kim,et al.  Envelope-Tracking CMOS Power Amplifier Module for LTE Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[7]  Marco Vigilante,et al.  To EVM or Two EVMs?: An Answer to the Question , 2017, IEEE Solid-State Circuits Magazine.

[8]  Andrea Bevilacqua,et al.  A 40–67 GHz Power Amplifier With 13 dBm ${\rm P}_{\rm SAT}$ and 16% PAE in 28 nm CMOS LP , 2015, IEEE Journal of Solid-State Circuits.

[9]  Robert B. Staszewski,et al.  Analysis and Design of a Multi-Core Oscillator for Ultra-Low Phase Noise , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Fu-Lung Hsueh,et al.  A 12mW all-digital PLL based on class-F DCO for 4G phones in 28nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[11]  Earl McCune Fundamentals of Switching RF Power Amplifiers , 2015, IEEE Microwave and Wireless Components Letters.

[12]  Kwang-Jin Koh,et al.  Integrated Inverse Class-F Silicon Power Amplifiers for High Power Efficiency at Microwave and mm-Wave , 2016, IEEE Journal of Solid-State Circuits.

[13]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[14]  Patrick Reynaert,et al.  Transformer-Based Uneven Doherty Power Amplifier in 90 nm CMOS for WLAN Applications , 2012, IEEE Journal of Solid-State Circuits.

[15]  Asad A. Abidi,et al.  Processes of AM-PM Distortion in Large-Signal Single-FET Amplifiers , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[17]  Chandrakanth Reddy Chappidi,et al.  Globally Optimal Matching Networks With Lossy Passives and Efficiency Bounds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[19]  P. Reynaert,et al.  A 60-GHz Power Amplifier With AM–PM Distortion Cancellation in 40-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[20]  Kaixue Ma,et al.  2.5 A 2-to-6GHz Class-AB power amplifier with 28.4% PAE in 65nm CMOS supporting 256QAM , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[21]  Takashi Ohira,et al.  The kQ Product as Viewed by an Analog Circuit Engineer , 2017, IEEE Circuits and Systems Magazine.

[22]  Marco Vigilante,et al.  On the Design of Wideband Transformer-Based Fourth Order Matching Networks for ${E}$ -Band Receivers in 28-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[23]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[24]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[25]  Robert Bogdan Staszewski,et al.  A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[26]  D. Pozar Microwave Engineering , 1990 .

[27]  Earl McCune A Technical Foundation for RF CMOS Power Amplifiers: Part 2: Power Amplifier Architectures , 2015, IEEE Solid-State Circuits Magazine.

[28]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[29]  Behzad Razavi,et al.  RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) , 2011 .

[30]  Bumman Kim,et al.  Highly Linear mm-Wave CMOS Power Amplifier , 2016, IEEE Transactions on Microwave Theory and Techniques.

[31]  L.E. Larson,et al.  A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[32]  Kaushik Sengupta,et al.  Frequency Reconfigurable mm-Wave Power Amplifier With Active Impedance Synthesis in an Asymmetrical Non-Isolated Combiner: Analysis and Design , 2017, IEEE Journal of Solid-State Circuits.

[33]  Matteo Bassi,et al.  A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[34]  Patrick Reynaert,et al.  Analysis and Optimization of Transformer-Based Power Combining for Back-Off Efficiency Enhancement , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[36]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[37]  Willy Sansen,et al.  analog design essentials , 2011 .

[38]  Hua Wang,et al.  A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network , 2010, IEEE Journal of Solid-State Circuits.

[39]  Christian Fager,et al.  Symmetrical Doherty Power Amplifier With Extended Efficiency Range , 2016, IEEE Transactions on Microwave Theory and Techniques.

[40]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[41]  Robert B. Staszewski,et al.  A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators , 2016, IEEE Journal of Solid-State Circuits.

[42]  Earl McCune A Technical Foundation for RF CMOS Power Amplifiers: Part 5: Making a Switch-Mode Power Amplifier , 2016, IEEE Solid-State Circuits Magazine.

[43]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[44]  Marco Vigilante,et al.  A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[45]  Patrick Reynaert,et al.  Highly Linear Fully Integrated Wideband RF PA for LTE-Advanced in 180-nm SOI , 2015, IEEE Transactions on Microwave Theory and Techniques.

[46]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.