Dynamic multistimuli-responsive reversible chiral transformation in supramolecular helices

[1]  Katsuhiro Maeda,et al.  Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. , 2016, Chemical reviews.

[2]  E. Yashima,et al.  Helix-helix inversion of an optically-inactive π-conjugated foldamer triggered by concentration changes of a single enantiomeric guest leading to a change in the helical stability. , 2016, Chemical communications.

[3]  S. Bhosale,et al.  Functional Naphthalene Diimides: Synthesis, Properties, and Applications. , 2016, Chemical reviews.

[4]  Brendan L. Wilkinson,et al.  Photomodulation of bacterial growth and biofilm formation using carbohydrate-based surfactants† †Electronic supplementary information (ESI) available: Experimental procedures, supplementary tables, figures and spectra. See DOI: 10.1039/c6sc03020c Click here for additional data file. , 2016, Chemical science.

[5]  S. Bandyopadhyay,et al.  Photomodulation of fluoride ion binding through anion-π interactions using a photoswitchable azobenzene system , 2016, Scientific Reports.

[6]  G. Blobel,et al.  A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase , 2016, Proceedings of the National Academy of Sciences.

[7]  R. Nolte,et al.  Natural supramolecular protein assemblies. , 2016, Chemical Society reviews.

[8]  V. Percec,et al.  A supramolecular helix that disregards chirality. , 2016, Nature chemistry.

[9]  D. La,et al.  Right handed chiral superstructures from achiral molecules: self-assembly with a twist , 2015, Scientific Reports.

[10]  R. Bhosale,et al.  Flower-like supramolecular self-assembly of phosphonic acid appended naphthalene diimide and melamine , 2015, Scientific Reports.

[11]  Hari Krishna Bisoyi,et al.  Light-directing chiral liquid crystal nanostructures: from 1D to 3D. , 2014, Accounts of chemical research.

[12]  E. Yashima,et al.  Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. , 2014, Nature chemistry.

[13]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[14]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[15]  Koichi Yamashita,et al.  Redox-responsive molecular helices with highly condensed π-clouds. , 2011, Nature chemistry.

[16]  T. Aida,et al.  Oligo(4-aminopiperidine-4-carboxylic acid): an unusual basic oligopeptide with an acid-induced helical conformation. , 2010, Journal of the American Chemical Society.

[17]  Theo Rasing,et al.  Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. , 2009, Nature chemistry.

[18]  E. W. Meijer,et al.  pH-switchable helicity of DNA-templated assemblies. , 2009, Angewandte Chemie.

[19]  V. Percec,et al.  Induced helical backbone conformations of self-organizable dendronized polymers. , 2008, Accounts of chemical research.

[20]  Noel M. O'Boyle,et al.  cclib: A library for package‐independent computational chemistry algorithms , 2008, J. Comput. Chem..

[21]  F. Würthner,et al.  Evolution of homochiral helical dye assemblies: involvement of autocatalysis in the "majority-rules" effect. , 2008, Angewandte Chemie.

[22]  Katsuhiko Ariga,et al.  Challenges and breakthroughs in recent research on self-assembly , 2008, Science and technology of advanced materials.

[23]  E. W. Meijer,et al.  Amplification of chirality in dynamic supramolecular aggregates. , 2007, Angewandte Chemie.

[24]  T. Aida,et al.  Spectroscopic visualization of vortex flows using dye-containing nanofibers. , 2007, Angewandte Chemie.

[25]  E. W. Meijer,et al.  Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. , 2007, Angewandte Chemie.

[26]  B. Feringa,et al.  Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. , 2007, Angewandte Chemie.

[27]  Jinfeng Zhang,et al.  On Side-Chain Conformational Entropy of Proteins , 2006, PLoS Comput. Biol..

[28]  Katsuhiko Ariga,et al.  Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. , 2006, Journal of the American Chemical Society.

[29]  Masato Tanaka,et al.  Switching of Optical Activity in Oligosilane through pH-Responsive Chiral Wrapping with Amylose , 2006 .

[30]  Sheshanath V. Bhosale,et al.  Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers , 2006, Science.

[31]  A. Ajayaghosh,et al.  Transcription and amplification of molecular chirality to oppositely biased supramolecular pi helices. , 2006, Angewandte Chemie.

[32]  Pier Luigi Luisi,et al.  The Emergence of Life: Frontmatter , 2006 .

[33]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[34]  Ben L Feringa,et al.  Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality , 2004, Science.

[35]  K. D. Singer,et al.  Self-organization of supramolecular helical dendrimers into complex electronic materials , 2002, Nature.

[36]  R. Stevens,et al.  Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. , 2001, Journal of the American Chemical Society.

[37]  G. Rikken,et al.  Enantioselective magnetochiral photochemistry , 2000, Nature.

[38]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[39]  Pedro Cintas,et al.  Absolute Asymmetric Synthesis under Physical Fields: Facts and Fictions. , 1998, Chemical reviews.

[40]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[41]  G. Stubbs,et al.  Caspar carboxylates: the structural basis of tobamovirus disassembly. , 1998, Biophysical journal.

[42]  Ben L. Feringa,et al.  Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.

[43]  D. Kondepudi,et al.  Weak neutral currents and the origin of biomolecular chirality , 1985, Nature.

[44]  Stephen F. Mason,et al.  Origins of biomolecular handedness , 1984, Nature.

[45]  C. Franconi,et al.  Protonation of Amides1 , 1960 .

[46]  H. Fraenkel-conrat,et al.  RECONSTITUTION OF ACTIVE TOBACCO MOSAIC VIRUS FROM ITS INACTIVE PROTEIN AND NUCLEIC ACID COMPONENTS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.