A Barankin-Type Bound on Direction Estimation Using Acoustic Sensor Arrays

We derive a Barankin-type bound (BTB) on the mean-square error (MSE) in estimating the directions of arrival (DOAs) of far-field sources using acoustic sensor arrays. We consider narrowband and wideband deterministic source signals, and scalar or vector sensors. Our results provide an approximation to the threshold of the signal-to-noise ratio (SNR) below which the performance of the maximum likelihood estimation (MLE) degrades rapidly. For narrowband DOA estimation using uniform linear vector-sensor arrays, we show that this threshold increases with the distance between the sensors. As a result, for medium SNR values the performance does not necessarily improve with this distance.

[1]  Jonathan Kitchens,et al.  Acoustic vector-sensor array processing , 2010 .

[2]  Arye Nehorai,et al.  Acoustic vector-sensor beamforming and Capon direction estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[3]  J. Tabrikian,et al.  Barankin bound for range and Doppler estimation using orthogonal signal transmission , 2006, 2006 IEEE Conference on Radar.

[4]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[5]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[6]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[7]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[8]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[9]  B. C. Ng,et al.  Sensor-array calibration using a maximum-likelihood approach , 1996 .

[10]  Arye Nehorai,et al.  Identifiability in array processing models with vector-sensor applications , 1996, IEEE Trans. Signal Process..

[11]  Alexandre Renaux Weiss–Weinstein Bound for Data-Aided Carrier Estimation , 2007, IEEE Signal Processing Letters.

[12]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[13]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[14]  Steven Kay,et al.  Broad-band detection based on two-dimensional mixed autoregressive models , 1993, IEEE Trans. Signal Process..

[15]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation. 2. Threshold phenomena , 1994, IEEE Trans. Signal Process..

[16]  Randolph L. Moses,et al.  Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath , 1997, IEEE Trans. Signal Process..

[17]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[18]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation , 1993, IEEE Trans. Signal Process..

[19]  Jian Li,et al.  Computationally efficient angle estimation for signals with known waveforms , 1995, IEEE Trans. Signal Process..

[20]  Fredrik Athley,et al.  Threshold region performance of maximum likelihood direction of arrival estimators , 2005, IEEE Transactions on Signal Processing.

[21]  Surendra Prasad,et al.  DOA estimation of wideband sources using a harmonic source model and uniform linear array , 1999, IEEE Trans. Signal Process..

[22]  Björn E. Ottersten,et al.  Maximum likelihood array processing in spatially correlated noise fields using parameterized signals , 1997, IEEE Trans. Signal Process..

[23]  Wen Xu,et al.  Performance Bounds on Matched-Field Methods for Source Localization and Estimation of Ocean Environmental Parameters , 2001 .