Wavelets and estimation of long memory in nonstationary models: Does anything beat the exact local whittle estimator?

ABSTRACT In this article, we analyze the performance of five estimation methods for the long memory parameter d. The goal of our article is to construct a wavelet estimate for the fractional differencing parameter in nonstationary long memory processes that dominate the well-known estimate of Shimotsu and Phillips (2005). The simulation results show that the wavelet estimation method of Lee (2005) with several tapering techniques performs better under most cases in nonstationary long memory. The comparison is based on the empirical root mean squared error of each estimate.

[1]  Boubaker Heni,et al.  A wavelet-based approach for modelling exchange rates , 2011 .

[2]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[3]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[4]  A Comparison of Estimators for Long-Memory Process∗-Simulation and Emprical Study - , 2008 .

[5]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[6]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[7]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Adam Mccloskey Estimation of the long‐memory stochastic volatility model parameters that is robust to level shifts and deterministic trends , 2013 .

[9]  Dominique Guegan,et al.  Comparaison of several estimation procedures for long term behavior , 2012 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Heni Boubaker,et al.  A wavelet-based approach for modelling exchange rates , 2011, Stat. Methods Appl..

[12]  V. Marimoutou,et al.  Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application , 2007 .

[13]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[14]  Nan-Jung Hsu LONG-MEMORY WAVELET MODELS , 2006 .

[15]  Mohamed Boutahar,et al.  Estimation of the long memory parameter in non stationary models: A Simulation Study , 2011 .

[16]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[17]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[18]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[19]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[20]  Jin Lee Estimating memory parameter in the US inflation rate , 2005 .

[21]  Liudas Giraitis,et al.  Nonstationarity-Extended Local Whittle Estimation , 2006 .

[22]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[23]  C. Velasco,et al.  Non-stationary log-periodogram regression , 1999 .

[24]  Wen-Jen Tsay Estimating long memory time-series-cross-section data , 2009 .

[25]  Donald W. K. Andrews,et al.  A BIAS-REDUCED LOG-PERIODOGRAM REGRESSION ESTIMATOR FOR THE LONG-MEMORY PARAMETER , 2003 .