Iron age: novel targets for iron overload.

Excess iron deposition in vital organs is the main cause of morbidity and mortality in patients affected by β-thalassemia and hereditary hemochromatosis. In both disorders, inappropriately low levels of the liver hormone hepcidin are responsible for the increased iron absorption, leading to toxic iron accumulation in many organs. Several studies have shown that targeting iron absorption could be beneficial in reducing or preventing iron overload in these 2 disorders, with promising preclinical data. New approaches target Tmprss6, the main suppressor of hepcidin expression, or use minihepcidins, small peptide hepcidin agonists. Additional strategies in β-thalassemia are showing beneficial effects in ameliorating ineffective erythropoiesis and anemia. Due to the suppressive nature of the erythropoiesis on hepcidin expression, these approaches are also showing beneficial effects on iron metabolism. The goal of this review is to discuss the major factors controlling iron metabolism and erythropoiesis and to discuss potential novel therapeutic approaches to reduce or prevent iron overload in these 2 disorders and ameliorate anemia in β-thalassemia.

[1]  S. Rivella,et al.  Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. , 2014, Blood.

[2]  S. Rivella,et al.  β-Thalassemia and Polycythemia vera: targeting chronic stress erythropoiesis. , 2014, The international journal of biochemistry & cell biology.

[3]  S. Rivella,et al.  IDENTIFICATION OF ERYTHROFERRONE AS AN ERYTHROID REGULATOR OF IRON METABOLISM , 2014, Nature Genetics.

[4]  T. Papayannopoulou,et al.  Stage-specific functional roles of integrins in murine erythropoiesis. , 2014, Experimental hematology.

[5]  S. Rivella,et al.  Modulators of erythropoiesis: emerging therapies for hemoglobinopathies and disorders of red cell production. , 2014, Hematology/oncology clinics of North America.

[6]  A. Fricot,et al.  An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia , 2014, Nature Medicine.

[7]  S. Rivella,et al.  Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia , 2013, Proceedings of the National Academy of Sciences.

[8]  S. Rivella,et al.  Treatment With Minihepcidin Peptide Improves Anemia and Iron Overload In a Mouse Model Of Thalassemia Intermedia , 2013 .

[9]  M. Fleming,et al.  An RNAi-Therapeutic Targeting Tmprss6, in Conjunction With Oral Chelator Therapy, Ameliorates Anemia and Additively Diminishes Secondary Iron Overload In a Mouse Model Of β-Thalassemia Intermedia , 2013 .

[10]  D. Bowden,et al.  Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study. , 2013, Blood.

[11]  S. Rivella,et al.  Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. , 2013, The Journal of clinical investigation.

[12]  S. Rivella,et al.  Macrophages support pathological erythropoiesis in Polycythemia Vera and Beta-Thalassemia , 2013, Nature Medicine.

[13]  S. Milstein,et al.  An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. , 2013, Blood.

[14]  T. Ganz,et al.  Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. , 2012, Blood.

[15]  Elizabeta Nemeth,et al.  Hepcidin and iron homeostasis. , 2012, Biochimica et biophysica acta.

[16]  M. Lidonnici,et al.  Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia. , 2012, Blood.

[17]  S. Rivella The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. , 2012, Blood reviews.

[18]  Elizabeta Nemeth,et al.  Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. , 2011, The Journal of clinical investigation.

[19]  S. Rivella,et al.  β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. , 2011, Blood.

[20]  S. Rivella,et al.  Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. , 2010, The Journal of clinical investigation.

[21]  Baskar Ramdas,et al.  Essential role for focal adhesion kinase in regulating stress hematopoiesis. , 2010, Blood.

[22]  D. Koeberl,et al.  The Role of Hepatocyte Hemojuvelin in the Regulation of Bone Morphogenic Protein-6 and Hepcidin Expression in Vivo* , 2010, The Journal of Biological Chemistry.

[23]  Charles B. Hall,et al.  Transferrin therapy ameliorates disease in β-thalassemic mice , 2010, Nature Medicine.

[24]  P. Brissot Les hémochromatoses. Nouvelle compréhension, nouveaux traitements , 2009 .

[25]  S. Rivella Ineffective erythropoiesis and thalassemias , 2009, Current opinion in hematology.

[26]  Jerry Kaplan,et al.  The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. , 2008, Cell metabolism.

[27]  S. Rivella,et al.  Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. , 2008, Blood.

[28]  N. Andrews,et al.  Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) , 2008, Nature Genetics.

[29]  N. Andrews,et al.  Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. , 2007, Blood.

[30]  T. Ganz,et al.  Suppression of hepcidin during anemia requires erythropoietic activity. , 2006, Blood.

[31]  Yi Fang Liu,et al.  Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. , 2006, Blood.

[32]  Raymond T Chung,et al.  Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression , 2006, Nature Genetics.

[33]  G. Pinkus,et al.  A mouse model of juvenile hemochromatosis. , 2005, The Journal of clinical investigation.

[34]  N. Andrews,et al.  Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. , 2005, The Journal of clinical investigation.

[35]  R. Paulson,et al.  BMP4 and Madh5 regulate the erythroid response to acute anemia. , 2005, Blood.

[36]  Gaël Nicolas,et al.  The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. , 2002, The Journal of clinical investigation.

[37]  C. Beaumont,et al.  Severe iron deficiency anemia in transgenic mice expressing liver hepcidin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Beaumont,et al.  Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Stockman Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice , 2013 .

[40]  P. Brissot [Haemochromatoses. New understanding, new treatments]. , 2009, Gastroenterologie clinique et biologique.

[41]  Matthias W. Hentze,et al.  Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization , 2004 .