Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya)

A series of laser-plasma interaction experiments is presented using gas-filled hohlraums that shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. Detailed experimental results are presented that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter and the results presented show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for the forthcoming experiments on National Ignition Facility.

[1]  Laurent Divol,et al.  Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies , 2006 .

[2]  John L. Kline,et al.  Mitigation of Stimulated Raman Scattering in Hohlraum Plasmas , 2007 .

[3]  Richard A. London,et al.  Energetics of multiple-ion species hohlraum plasmasa) , 2007 .

[4]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[5]  P. Michel,et al.  Magnetically controlled plasma waveguide for laser wakefield acceleration , 2008 .

[6]  P. Michel,et al.  Pushing the limits of plasma length in inertial-fusion laser-plasma interaction experiments. , 2007, Physical review letters.

[7]  L. Divol,et al.  Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments. , 2007, Physical review letters.

[8]  J. Moody,et al.  Localization of Stimulated Brillouin Scattering in Random Phase Plate Speckles , 1998 .

[9]  L. Divol,et al.  3ω transmitted beam diagnostic at the Omega Laser Facility , 2006 .

[10]  Juan C Fernández,et al.  Observed insensitivity of stimulated Raman scattering on electron density , 2000 .

[11]  L. Divol,et al.  Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas. , 2008, Physical review letters.

[12]  S. Depierreux,et al.  Laser-plasma interaction in the context of inertial fusion: experiments and modeling , 2007 .

[13]  L. Divol,et al.  Suppression of stimulated brillouin scattering by increased landau damping in multiple-ion-species hohlraum plasmas. , 2008, Physical review letters.

[14]  S Depierreux,et al.  Effect of the laser wavelength on the saturated level of stimulated Brillouin scattering. , 2009, Physical review letters.

[15]  J. Cobble,et al.  Hot, dense, millimeter-scale, high-Z plasmas for laser-plasma interactions studies. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  R. E. Bahr,et al.  A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser. , 2008, The Review of scientific instruments.

[17]  J. Kline,et al.  Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam. , 2008, The Review of scientific instruments.

[18]  J. Ross,et al.  Implementation of imaging Thomson scattering on the Omega Laser , 2006 .

[19]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[20]  Joshua E. Rothenberg,et al.  Reduction of laser self-focusing in plasma by polarization smoothing , 1998 .

[21]  J. D. Moody,et al.  Laser–plasma interactions in ignition‐scale hohlraum plasmas , 1996 .

[22]  D H Froula,et al.  Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas. , 2007, Physical review letters.

[23]  S. Depierreux,et al.  Experimental study of the stimulated Brillouin scattering saturation at 527 nm , 2006 .

[24]  L. Divol,et al.  Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas (invited) , 2006 .

[25]  A. J. Morgan,et al.  Random phase plates for beam smoothing on the Nova laser. , 1993, Applied optics.

[26]  Fuchs,et al.  Modification of spatial and temporal gains of stimulated brillouin and raman scattering by polarization smoothing , 2000, Physical review letters.

[27]  P. Michel,et al.  Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experimentsa) , 2008 .

[28]  L J Suter,et al.  Direct measurements of an increased threshold for stimulated brillouin scattering with polarization smoothing in ignition hohlraum plasmas. , 2008, Physical review letters.

[29]  S. R. Goldman,et al.  INCREASED SATURATED LEVELS OF STIMULATED BRILLOUIN SCATTERING OF A LASER BY SEEDING A PLASMA WITH AN EXTERNAL LIGHT SOURCE , 1998 .

[30]  L. Divol,et al.  Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. , 2009, Physical review letters.

[31]  B. Albright,et al.  Different kλD regimes for nonlinear effects on Langmuir wavesa) , 2006 .

[32]  Nathan Meezan Role of Hydrodynamics Simulations for Laser-Plasma Interaction Predictive Capability , 2006 .

[33]  J. Moody,et al.  Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas , 1996 .

[34]  D. Meyerhofer,et al.  Multibeam stimulated brillouin scattering from hot, solid-target plasmas. , 2002, Physical review letters.

[35]  D. Strozzi,et al.  Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses. , 2009, Physical review letters.

[36]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[37]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[38]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[39]  R. S. Craxton,et al.  Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions , 1999 .

[40]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .