The Power of Human Cancer Genetics as Revealed by Low-Grade Gliomas.

The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.

[1]  David T. W. Jones,et al.  Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1 , 2019, Acta Neuropathologica.

[2]  David T. W. Jones,et al.  Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA , 2019, Acta Neuropathologica.

[3]  Sarah E. Dorff,et al.  FDA Approval Summary: Ivosidenib for Relapsed or Refractory Acute Myeloid Leukemia with an Isocitrate Dehydrogenase-1 Mutation , 2019, Clinical Cancer Research.

[4]  B. Tuch,et al.  Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study , 2019, Annals of oncology : official journal of the European Society for Medical Oncology.

[5]  D. Sinnett,et al.  Recurrent somatic BRAF insertion (p.V504_R506dup): a tumor marker and a potential therapeutic target in pilocytic astrocytoma , 2018, Oncogene.

[6]  David T. W. Jones,et al.  Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis , 2018, Brain pathology.

[7]  David T. W. Jones,et al.  Methylome analysis and whole-exome sequencing reveal that brain tumors associated with encephalocraniocutaneous lipomatosis are midline pilocytic astrocytomas , 2018, Acta Neuropathologica.

[8]  D. Sinnett,et al.  Trametinib for progressive pediatric low-grade gliomas , 2018, Journal of Neuro-Oncology.

[9]  David T. W. Jones,et al.  Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile , 2018, Acta Neuropathologica.

[10]  David T. W. Jones,et al.  FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma , 2018, Acta Neuropathologica.

[11]  B. Radotra,et al.  Desmoplastic non-infantile astrocytoma/ganglioglioma: rare low-grade tumor with frequent BRAF V600E mutation. , 2018, Human pathology.

[12]  N. André,et al.  Efficacy and safety results from a phase I/IIa study of dabrafenib in pediatric patients with BRAF V600–mutant relapsed refractory low-grade glioma. , 2018 .

[13]  David T. W. Jones,et al.  Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features , 2018, Acta Neuropathologica.

[14]  David T. W. Jones,et al.  Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations , 2018, Acta Neuropathologica.

[15]  Michael C. Heinold,et al.  The landscape of genomic alterations across childhood cancers , 2018, Nature.

[16]  David T. W. Jones,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[17]  Matthew Meyerson,et al.  Landscapes of childhood tumours , 2018, Nature.

[18]  D. Brat,et al.  A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle , 2018, Nature Communications.

[19]  P. Varlet,et al.  Co‐occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma , 2018, Brain pathology.

[20]  Raquel S. Sevilla,et al.  A Brain Penetrant Mutant IDH1 Inhibitor Provides In Vivo Survival Benefit , 2017, Scientific Reports.

[21]  D. Gutmann,et al.  Optic Pathway Gliomas in Neurofibromatosis Type 1: An Update: Surveillance, Treatment Indications, and Biomarkers of Vision. , 2017, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[22]  M. Prados,et al.  A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study , 2017, Neuro-oncology.

[23]  K. Ligon,et al.  Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[25]  K. Davies,et al.  Desmoplastic infantile astrocytoma/ganglioglioma with rare BRAF V600D mutation , 2017, Pediatric blood & cancer.

[26]  D. Ellison,et al.  Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination , 2017, Acta Neuropathologica.

[27]  J. Majewski,et al.  Longitudinal mutational analysis of a cerebellar pilocytic astrocytoma recurring as a ganglioglioma , 2017, Pediatric Blood & Cancer.

[28]  A. Unterberg,et al.  Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo , 2017, Acta Neuropathologica.

[29]  K. Ligon,et al.  Pediatric low-grade gliomas: implications of the biologic era , 2016, Neuro-oncology.

[30]  Uri Tabori,et al.  Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma , 2016, Acta Neuropathologica Communications.

[31]  David T. W. Jones,et al.  Pediatric high-grade glioma: biologically and clinically in need of new thinking , 2016, Neuro-oncology.

[32]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[33]  Mark L. Greenberg,et al.  Clinical and treatment factors determining long‐term outcomes for adult survivors of childhood low‐grade glioma: A population‐based study , 2016, Cancer.

[34]  David T. W. Jones,et al.  Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors , 2016, Acta Neuropathologica.

[35]  Heather L. Mulder,et al.  Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology , 2016, Acta Neuropathologica.

[36]  Liliana Goumnerova,et al.  MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism , 2016, Nature Genetics.

[37]  David T. W. Jones,et al.  Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age , 2015, Oncotarget.

[38]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[39]  Alexander R. Pico,et al.  Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. , 2015, The New England journal of medicine.

[40]  Gary D Bader,et al.  Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. , 2015, Cancer cell.

[41]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[42]  P. Varlet,et al.  Evidence for BRAF V600E and H3F3A K27M double mutations in paediatric glial and glioneuronal tumours , 2015, Neuropathology and applied neurobiology.

[43]  D. Merico,et al.  BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  J. Meixensberger,et al.  Disseminated oligodendroglial cell-like leptomeningeal tumors: preliminary diagnostic and therapeutic results for a novel tumor entity , 2015, Journal of Neuro-Oncology.

[45]  O. Witt,et al.  Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. , 2014, The Lancet. Oncology.

[46]  J. Majewski,et al.  Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors , 2014, Acta Neuropathologica.

[47]  T. Pietsch,et al.  FGFR1 mutations in Rosette-forming glioneuronal tumors of the fourth ventricle. , 2014, Journal of neuropathology and experimental neurology.

[48]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[49]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[50]  J. Golfinos,et al.  Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. , 2014, Neuro-oncology.

[51]  R. Beroukhim,et al.  Long-Term Outcome of 4,040 Children Diagnosed With Pediatric Low-Grade Gliomas: An Analysis of the Surveillance Epidemiology and End Results (SEER) Database , 2014, Pediatric blood & cancer.

[52]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[53]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[54]  A. Fontebasso,et al.  Molecular biomarkers in pediatric glial tumors: a needed wind of change , 2013, Current opinion in oncology.

[55]  K. Blomgren,et al.  Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species , 2013, Progress in Neurobiology.

[56]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[57]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[58]  C. Stewart‐Amidei,et al.  A new reality: long-term survivorship with a malignant brain tumor. , 2013, Oncology nursing forum.

[59]  A. Resnick,et al.  Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas , 2013, Proceedings of the National Academy of Sciences.

[60]  M. Rosenblum,et al.  Identification of a Novel, Recurrent SLC44A1‐PRKCA Fusion in Papillary Glioneuronal Tumor , 2013, Brain pathology.

[61]  N. Foreman,et al.  Brainstem ganglioglioma successfully treated with vemurafenib. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  E. Thiele,et al.  Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial , 2013, The Lancet.

[63]  W. Snider,et al.  MEK Is a Key Regulator of Gliogenesis in the Developing Brain , 2012, Neuron.

[64]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[65]  M. Rosenblum,et al.  Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity , 2012, Acta Neuropathologica.

[66]  Andrey Korshunov,et al.  Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations , 2012, Acta Neuropathologica.

[67]  R. McLendon,et al.  Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas , 2012, Oncotarget.

[68]  K. Aldape,et al.  Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor , 2012, Acta Neuropathologica.

[69]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[70]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.

[71]  Zhaoshi Jiang,et al.  Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[72]  S. Pfister,et al.  Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas , 2011, Clinical Cancer Research.

[73]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[74]  D. Frappaz,et al.  Brain tumors: from childhood through adolescence into adulthood. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[75]  S. Shurtleff,et al.  MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas , 2010, Acta Neuropathologica.

[76]  M. J. van den Bent Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective , 2010, Acta neuropathologica.

[77]  M. Fassan,et al.  Diffuse Leptomeningeal Glioneuronal Tumors: A New Entity? , 2010, Brain pathology.

[78]  D. Wilkinson,et al.  Neuronal regulation of the spatial patterning of neurogenesis. , 2010, Developmental cell.

[79]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[80]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[81]  D. Desruisseau,et al.  Pilocytic astrocytoma in a child with Noonan syndrome , 2009, Pediatric blood & cancer.

[82]  A. Montpetit,et al.  Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours , 2009, British Journal of Cancer.

[83]  D. Pearson,et al.  Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma , 2009, Oncogene.

[84]  B. Scheithauer,et al.  ROSETTE‐FORMING GLIONEURONAL TUMOR: REPORT OF A CHIASMAL‐OPTIC NERVE EXAMPLE IN NEUROFIBROMATOSIS TYPE 1 SPECIAL PATHOLOGY REPORT , 2009, Neurosurgery.

[85]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[86]  E. Kanavakis,et al.  Tumor development in three patients with Noonan syndrome , 2008, European Journal of Pediatrics.

[87]  G. Reifenberger,et al.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. , 2008, The Journal of clinical investigation.

[88]  A. Hoischen,et al.  Frequent loss of chromosome 9, homozygous CDKN2A/p14ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas , 2007, Oncogene.

[89]  David T. W. Jones,et al.  Genomic Analysis of Pilocytic Astrocytomas at 0.97 Mb Resolution Shows an Increasing Tendency Toward Chromosomal Copy Number Change With Age , 2006, Journal of neuropathology and experimental neurology.

[90]  I. Pollack,et al.  Pediatric brain tumors. , 1999, Seminars in surgical oncology.

[91]  R. Sanford,et al.  A 16-Year-Old Male with Noonan’s Syndrome Develops Progressive Scoliosis and Deteriorating Gait , 1999, Pediatric Neurosurgery.

[92]  B. Brody,et al.  Sequence of Central Nervous System Myelination in Human Infancy. I. An Autopsy Study of Myelination , 1987, Journal of neuropathology and experimental neurology.

[93]  David T. W. Jones,et al.  BRAF V600E Status Alone Is Not Sufficient as a Prognostic Biomarker in Pediatric Low-Grade Glioma. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[94]  J. Huse,et al.  Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) , 2017 .

[95]  David T. W. Jones,et al.  New Classification for Central Nervous System Tumors: Implications for Diagnosis and Therapy. , 2017, American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting.

[96]  A. Fontebasso,et al.  Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way. , 2015, Critical reviews in oncogenesis.

[97]  Jill S. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 , 2015, Neuro-oncology.

[98]  J. Uhm An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2009 .

[99]  Frank M. Sacks,et al.  IDH 1 and IDH 2 Mutations in Gliomas , 2009 .

[100]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[101]  U. Roessmann,et al.  Astrocytes in the developing human brain. An immunohistochemical study. , 1986, Acta neuropathologica.