Theoretical characterization of the dynamical behavior and transport properties of alpha,gamma-peptide nanotubes in solution.

We present here a molecular dynamics study on a promising class of peptide nanotubes with a partially hydrophobic inner cavity and an easy chemical functionalization of the lumen of the cylindrical structure. The structural and dynamical behavior of the nanotube in water, methanol, and chloroform has been analyzed using state of the art theoretical methods. The nanotube structure is always well preserved, but solvent-dependent dynamic alterations are evident. Such dynamic effects are surprisingly more severe in the most viscous solvent (water), as a consequence of the competition in polar solvents between intra- and intermolecular hydrogen bonds. Stiffness analysis from the collected trajectories helped us to characterize the equilibrium deformability of the nanotube, while steered dynamics simulations were used to determine the magnitude of free energy associated with nanotube growth. Analysis of the carrier and permeation properties of the compounds reveals surprising properties: (i) permeability for the most polar solvent (water), (ii) carrier properties for the most apolar solvent (chloroform), and (iii) neither good permeation nor carrier properties for the intermediate solvent in polarity (methanol). Results reported here constitute the most extensive characterization of these nanotubes presented to date and open many intriguing questions on their stability, dynamics, and transport/carrier properties.

[1]  George C Schatz,et al.  Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube. , 2006, The journal of physical chemistry. B.

[2]  J. Bragin,et al.  Equilibrium Geometry and Properties Of Cyclo[(Gly-d-Ala)4] and {Cyclo[(Gly-d-Ala)4]}2from Density Functional Theory , 1998 .

[3]  Wilfred F. van Gunsteren,et al.  The effect of force-field parameters on properties of liquids: Parametrization of a simple three-site model for methanol , 2000 .

[4]  M. Ghadiri,et al.  Peptide Nanotubes and Beyond , 1998 .

[5]  D. Gauthier,et al.  Micrometer-sized hexagonal tubes self-assembled by a cyclic peptide in a liquid crystal. , 2004, Angewandte Chemie.

[6]  J. Granja,et al.  Methyl-Blocked Dimeric α,γ-Peptide Nanotube Segments: Formation of a Peptide Heterodimer through Backbone–Backbone Interactions† , 2005 .

[7]  Modesto Orozco,et al.  A consensus view of protein dynamics , 2007, Proceedings of the National Academy of Sciences.

[8]  Donald Bashford,et al.  STRUCTURE AND DYNAMICS OF SELF-ASSEMBLING PEPTIDE NANOTUBES AND THE CHANNEL-MEDIATED WATER ORGANIZATION AND SELF-DIFFUSION. A MOLECULAR DYNAMICS STUDY , 1995 .

[9]  M. Ghadiri,et al.  Self-Assembling Cyclic β3-Peptide Nanotubes as Artificial Transmembrane Ion Channels , 1998 .

[10]  M. Ghadiri,et al.  Diffusion-Limited Size-Selective Ion Sensing Based on SAM-Supported Peptide Nanotubes , 1997 .

[11]  J. Granja,et al.  Large-diameter self-assembled dimers of alpha,gamma-cyclic peptides, with the nanotubular solid-state structure of cyclo-[(l-Leu-D-(Me)N-gamma-Acp)(4)-].4CHCl(2)COOH. , 2007, Chemical communications.

[12]  J. Faraldo-Gómez,et al.  Polarizable model of chloroform based on classical Drude oscillators , 2009 .

[13]  I. Karle,et al.  The conformation of the cyclic tetrapeptide l‐Ser(O‐t‐Bu)‐β‐Ala‐Gly‐l‐β‐Asp(OMe) containing a 14‐membered ring , 1975 .

[14]  Roberto Rizzo,et al.  Conformational Analysis of Regular Enantiomeric Sequences , 1974 .

[15]  D. Gauthier,et al.  Self-Assembly of Cyclic Peptides into Nanotubes and Then into Highly Anisotropic Crystalline Materials This work was supported by FCAR Québec. , 2001, Angewandte Chemie.

[16]  Interaction of a peptide nanotube with a water-membrane interface. , 2006, Physical biology.

[17]  M. Ghadiri,et al.  Self‐assembled nanoscale tubular ensembles , 1995 .

[18]  M. Ghadiri,et al.  Reversible Photoisomerization of Self-Organized Cylindrical Peptide Assemblies at Air−Water and Solid Interfaces , 1999 .

[19]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[20]  Norma H. Pawley,et al.  Theoretical Investigation of the Cyclic Peptide System Cyclo(( D-Ala-Glu-D-Ala-Gln)m)1-4) , 1997 .

[21]  Juan R. Granja,et al.  Self-Assembling Organic Nanotubes. , 2001, Angewandte Chemie.

[22]  M. Ghadiri,et al.  A Synthetic Pore-Mediated Transmembrane Transport of Glutamic Acid. , 2001, Angewandte Chemie.

[23]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[24]  M. Ghadiri,et al.  Systemic Antibacterial Activity of Novel Synthetic Cyclic Peptides , 2005, Antimicrobial Agents and Chemotherapy.

[25]  H. Matsui,et al.  Peptide‐Based Nanotubes and Their Applications in Bionanotechnology , 2005, Advanced materials.

[26]  Juan R. Granja,et al.  Channel-Mediated Transport of Glucose Across Lipid Bilayers , 1994 .

[27]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  A. Aubry,et al.  Self-assembling organic nanotubes from enantiopure cyclo-N,N'-linked oligoureas: design, synthesis, and crystal structure. , 2002, Angewandte Chemie.

[29]  Luis Castedo,et al.  Folding control in cyclic peptides through N-methylation pattern selection: formation of antiparallel beta-sheet dimers, double reverse turns and supramolecular helices by 3alpha,gamma cyclic peptides. , 2008, Chemistry.

[30]  Christophe Chipot,et al.  Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. , 2003, Biophysical journal.

[31]  M. Ghadiri,et al.  Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems. , 1999, Angewandte Chemie.

[32]  J. Granja,et al.  The Smallest a,?-Peptide Nanotubulet Segments: Cyclic a,?-Tetrapeptide Dimers , 2005 .

[33]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[34]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[35]  I. Karle,et al.  Hydrogen-Bonded Self-Assembled Peptide Nanotubes from Cystine-Based Macrocyclic Bisureas , 1999 .

[36]  J. Granja,et al.  Self-assembled peptide tubelets with 7 A pores. , 2005, Chemistry.

[37]  S. Santer,et al.  Peptide-polymer hybrid nanotubes. , 2005, Angewandte Chemie.

[38]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[39]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[40]  M. Ghadiri,et al.  Design of self-assembling peptide nanotubes with delocalized electronic states. , 2006, Small.

[41]  Luis Castedo,et al.  New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. , 2003, Journal of the American Chemical Society.

[42]  Matthew J. Davis,et al.  Self-assembled nanotubes that reversibly bind acetic acid guests. , 2003, Journal of the American Chemical Society.

[43]  Andreas Janshoff,et al.  Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing , 1998 .

[44]  Kenji Kobayashi,et al.  β-Sheet Peptide Architecture: Measuring the Relative Stability of Parallel vs. Antiparallel β-Sheets†‡ , 1995 .

[45]  Rommie E. Amaro,et al.  Developing an energy landscape for the novel function of a (β/α)8 barrel: Ammonia conduction through HisF , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Seebach,et al.  Cyclo‐β‐peptides: Structure and tubular stacking of cyclic tetramers of 3‐aminobutanoic acid as determined from powder diffraction data , 1997 .

[47]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[48]  Bernd Ensing,et al.  Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents. , 2006, The journal of physical chemistry. B.

[49]  C. R. Martin,et al.  The emerging field of nanotube biotechnology , 2003, Nature Reviews Drug Discovery.

[50]  Nurit Ashkenasy,et al.  Modulating Charge Transfer through Cyclic D,L-α-Peptide Self-Assembly , 2005 .

[51]  Juan R. Granja,et al.  Antibacterial agents based on the cyclic d,l-α-peptide architecture , 2001, Nature.

[52]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[53]  Luis Castedo,et al.  Controlling multiple fluorescent signal output in cyclic peptide-based supramolecular systems. , 2007, Journal of the American Chemical Society.

[54]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[55]  J. Granja,et al.  New α,γ-peptide tubulets , 2005 .

[56]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[57]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[58]  M. Orozco,et al.  Molecular Dynamics Simulations of the d(T·A·T) Triple Helix , 1997 .

[59]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  George C Schatz,et al.  Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube. , 2006, The journal of physical chemistry. B.

[61]  Guang-Ju Chen,et al.  Theoretical Studies of Monomer and Dimer of Cyclo[(− l -Phe 1 - d -Ala 2 −) n ] and Cyclo[(− l -Phe 1 - d - Me N -Ala 2 −) n ] ( n = 3−6) , 2002 .

[62]  M Reza Ghadiri,et al.  A heterocyclic peptide nanotube. , 2003, Journal of the American Chemical Society.

[63]  Hui Xie,et al.  Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. , 2005, Journal of the American Chemical Society.

[64]  D. Guldi,et al.  Electron transfer in Me-blocked heterodimeric α,γ-peptide nanotubular donor–acceptor hybrids , 2007, Proceedings of the National Academy of Sciences.

[65]  F. Javier Luque,et al.  Towards a molecular dynamics consensus view of B-DNA flexibility , 2008, Nucleic acids research.

[66]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[67]  F. J. Luque,et al.  Classical molecular interaction potentials: Improved setup procedure in molecular dynamics simulations of proteins , 2001, Proteins.

[68]  M. Ghadiri,et al.  Cyclic Peptides as Molecular Adapters for a Pore-Forming Protein , 2000 .

[69]  Jillian M. Buriak,et al.  Cylindrical β-Sheet Peptide Assemblies , 1998 .

[70]  Jingchuan Zhu,et al.  Molecular modeling investigation of adsorption of self-assembled peptide nanotube of cyclo-[(1R,3S)-γ-Acc-d-Phe]3 in CHCl3 , 2007 .

[71]  Peter A. Kollman,et al.  Application of the RESP Methodology in the Parametrization of Organic Solvents , 1998 .