Inductive logic programming at 30: a new introduction

Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a logic program (a set of logical rules) that generalises training examples. As ILP approaches 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main ILP learning settings. We describe the main building blocks of an ILP system. We compare several ILP systems on several dimensions. We detail four systems (Aleph, TILDE, ASPAL, and Metagol). We contrast ILP with other forms of machine learning. Finally, we summarise the current limitations and outline promising directions for future research.

[1]  Shan-Hwei Nienhuys-Cheng,et al.  Foundations of Inductive Logic Programming , 1997, Lecture Notes in Computer Science.

[2]  Stefano Ferilli,et al.  Automatic Induction of First-Order Logic Descriptors Type Domains from Observations , 2004, ILP.

[3]  Georgios Paliouras,et al.  Predicting the Evolution of Communities with Online Inductive Logic Programming , 2018, TIME.

[4]  Ivan Bratko,et al.  An Experiment in Robot Discovery with ILP , 2008, ILP.

[5]  Andrew Cropper,et al.  Playgol: learning programs through play , 2019, IJCAI.

[6]  Ramón P. Otero,et al.  Induction of Stable Models , 2001, ILP.

[7]  Stephen Muggleton,et al.  Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP , 2018, Machine Learning.

[8]  Zohar Manna,et al.  A Deductive Approach to Program Synthesis , 1979, TOPL.

[9]  Alexander Artikis,et al.  Online learning of event definitions , 2016, Theory and Practice of Logic Programming.

[10]  A. Tate A measure of intelligence , 2012 .

[11]  Lovekesh Vig,et al.  Large-Scale Assessment of Deep Relational Machines , 2018, ILP.

[12]  John Nicholls,et al.  Z notation , 1994 .

[13]  Stephen Muggleton,et al.  Can predicate invention compensate for incomplete background knowledge? , 2015, SCAI.

[14]  Tim Rocktäschel,et al.  End-to-end Differentiable Proving , 2017, NIPS.

[15]  Sriraam Natarajan,et al.  Non-Parametric Learning of Lifted Restricted Boltzmann Machines , 2020, Int. J. Approx. Reason..

[16]  Chiaki Sakama,et al.  Brave induction: a logical framework for learning from incomplete information , 2009, Machine Learning.

[17]  Alessandra Russo,et al.  Inductive Logic Programming as Abductive Search , 2010, ICLP.

[18]  Ashwin Srinivasan,et al.  Identification of biological transition systems using meta-interpreted logic programs , 2018, Machine Learning.

[19]  Luc De Raedt,et al.  Declarative Bias for Specific-to-General ILP Systems , 1994, Machine Learning.

[20]  Claude Sammut Concept Learning by Experiment , 1981, IJCAI.

[21]  Ashwin Srinivasan,et al.  ILP: A Short Look Back and a Longer Look Forward , 2003, J. Mach. Learn. Res..

[22]  José Hernández-Orallo,et al.  Making sense of sensory input , 2019, Artif. Intell..

[23]  Stephen Muggleton,et al.  Scientific knowledge discovery using inductive logic programming , 1999, Commun. ACM.

[24]  Filip Zelezný,et al.  An experimental test of Occam’s razor in classification , 2011, Machine Learning.

[25]  William W. Cohen Recovering Software Specifications with Inductive Logic Programming , 1994, AAAI.

[26]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[27]  Andrew Cropper,et al.  Forgetting to learn logic programs , 2019, AAAI.

[28]  William W. Cohen Pac-learning Recursive Logic Programs: Negative Results , 1994, J. Artif. Intell. Res..

[29]  Andrew Cropper,et al.  Knowledge Refactoring for Program Induction , 2020, ArXiv.

[30]  Céline Rouveirol,et al.  The Game of Bridge: A Challenge for ILP , 2018, ILP.

[31]  Stefan Wrobel,et al.  Learning Minesweeper with Multirelational Learning , 2003, IJCAI.

[32]  Luc De Raedt,et al.  Relational Kernel-Based Grasping with Numerical Features , 2015, ILP.

[33]  Ingo Br,et al.  Prolog programming for artificial intelligence , 1990 .

[34]  Wray L. Buntine Generalized Subsumption and Its Applications to Induction and Redundancy , 1986, Artif. Intell..

[35]  Waldo Hasperué,et al.  The master algorithm: how the quest for the ultimate learning machine will remake our world , 2015 .

[36]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[37]  Andrew Cropper,et al.  Turning 30: New Ideas in Inductive Logic Programming , 2020, ArXiv.

[38]  Claude Semmut Concept learning by experiment , 1981, IJCAI 1981.

[39]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[40]  Stephen Muggleton,et al.  Meta-interpretive learning: application to grammatical inference , 2013, Machine Learning.

[41]  Pierre Flener,et al.  Inductive Logic Program Synthesis with DIALOGS , 1996, Inductive Logic Programming Workshop.

[42]  Steven Schockaert,et al.  Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures , 2018, J. Artif. Intell. Res..

[43]  Andrew Cropper,et al.  SLD-Resolution Reduction of Second-Order Horn Fragments - technical report - , 2019, JELIA.

[44]  Krysia Broda,et al.  Inductive Learning of Answer Set Programs from Noisy Examples , 2018, ArXiv.

[45]  Temple F. Smith Occam's razor , 1980, Nature.

[46]  Ivan Bratko,et al.  Prolog Programming for Artificial Intelligence, 4th Edition , 2012 .

[47]  Shiu Yin Yuen,et al.  Efficient program synthesis using constraint satisfaction in inductive logic programming , 2013, J. Mach. Learn. Res..

[48]  Katsumi Inoue,et al.  Induction as Consequence Finding , 2004, Machine Learning.

[49]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[50]  Nando de Freitas,et al.  Neural Programmer-Interpreters , 2015, ICLR.

[51]  James Cheney,et al.  Towards meta-interpretive learning of programming language semantics , 2019, ILP.

[52]  Sumit Gulwani,et al.  Spreadsheet data manipulation using examples , 2012, CACM.

[53]  Jorg-uwe Kietz,et al.  Controlling the Complexity of Learning in Logic through Syntactic and Task-Oriented Models , 1992 .

[54]  William W. Cohen Inductive specification recovery: Understanding software by learning from example behaviors , 1995, Automated Software Engineering.

[55]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[56]  Claus-Rainer Rollinger,et al.  The Discovery of the Equator or Concept Driven Learning , 1983, IJCAI.

[57]  Andrew Cropper,et al.  Efficiently learning efficient programs , 2017 .

[58]  Robert A. Kowalski,et al.  Linear Resolution with Selection Function , 1971, Artif. Intell..

[59]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[60]  Qiang Yang,et al.  Lifelong Machine Learning Systems: Beyond Learning Algorithms , 2013, AAAI Spring Symposium: Lifelong Machine Learning.

[61]  Stephen Muggleton,et al.  The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures , 2001, Machine Learning.

[62]  Ashwin Srinivasan,et al.  Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL , 1998, Machine Learning.

[63]  Luc De Raedt,et al.  Compressing probabilistic Prolog programs , 2007, Machine Learning.

[64]  Dov M. Gabbay,et al.  What Is Negation as Failure? , 2012, Logic Programs, Norms and Action.

[65]  Mukund Raghothaman,et al.  Provenance-guided synthesis of Datalog programs , 2019, Proc. ACM Program. Lang..

[66]  Robert A. Kowalski,et al.  The early years of logic programming , 1988, CACM.

[67]  Martin Gebser,et al.  Answer Set Solving in Practice , 2012, Answer Set Solving in Practice.

[68]  Stephen Muggleton,et al.  TopLog: ILP Using a Logic Program Declarative Bias , 2008, ICLP.

[69]  Raymond Reiter On Closed World Data Bases , 1977, Logic and Data Bases.

[70]  Irene Stahl,et al.  The appropriateness of predicate invention as bias shift operation in ILP , 1995, Machine Learning.

[71]  S. Muggleton Stochastic Logic Programs , 1996 .

[72]  Sumit Gulwani,et al.  Inductive programming meets the real world , 2015, Commun. ACM.

[73]  Stephen Muggleton,et al.  Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited , 2013, Machine Learning.

[74]  Stephen Muggleton,et al.  Bias reformulation for one-shot function induction , 2014, ECAI.

[75]  Ashwin Srinivasan,et al.  An Empirical Study of the Use of Relevance Information in Inductive Logic Programming , 2003, J. Mach. Learn. Res..

[76]  Andrew Cropper,et al.  Learning large logic programs by going beyond entailment , 2020, IJCAI.

[77]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[78]  Eduardo M. Morales,et al.  LEARNING PLAYING STRATEGIES IN CHESS , 1996, Comput. Intell..

[79]  Armando Solar-Lezama,et al.  Write, Execute, Assess: Program Synthesis with a REPL , 2019, NeurIPS.

[80]  Philippe Roussel,et al.  The birth of Prolog , 1993, HOPL-II.

[81]  Luc De Raedt,et al.  Inducing Probabilistic Relational Rules from Probabilistic Examples , 2015, IJCAI.

[82]  Saso Dzeroski,et al.  An Introduction to Inductive Logic Programming and Learning Language in Logic , 2001, Learning Language in Logic.

[83]  Stephen Muggleton,et al.  Complete Bottom-Up Predicate Invention in Meta-Interpretive Learning , 2020, IJCAI.

[84]  Luc De Raedt,et al.  Logical Settings for Concept-Learning , 1997, Artif. Intell..

[85]  Alireza Tamaddoni-Nezhad,et al.  Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. , 2017, Trends in ecology & evolution.

[86]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[87]  Marijn J. H. Heule,et al.  SAT Competition 2018 , 2019, J. Satisf. Boolean Model. Comput..

[88]  G. Plotkin Automatic Methods of Inductive Inference , 1972 .

[89]  Katsumi Inoue,et al.  Learning any semantics for dynamical systems represented by logic programs , 2020 .

[90]  Phillip D. Summers,et al.  A Methodology for LISP Program Construction from Examples , 1977, J. ACM.

[91]  Eric McCreath,et al.  Extraction of Meta-Knowledge to Restrict the Hypothesis Space for ILP Systems , 1995 .

[92]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[93]  Chiaki Sakama,et al.  Learning Delayed Influences of Biological Systems , 2015, Front. Bioeng. Biotechnol..

[94]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.

[95]  Raymond J. Mooney,et al.  Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs , 1995, J. Artif. Intell. Res..

[96]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[97]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming , 2004, Probabilistic Inductive Logic Programming.

[98]  Ivan Bratko,et al.  Learning Qualitative Models of Dynamic Systems , 1994, ML.

[99]  Zhi-Hua Zhou,et al.  Logical Vision: One-Shot Meta-Interpretive Learning from Real Images , 2017, ILP.

[100]  Richard Evans,et al.  Inductive general game playing , 2019, Machine Learning.

[101]  Sumit Gulwani,et al.  Automating string processing in spreadsheets using input-output examples , 2011, POPL '11.

[102]  S. Vere Induction of concepts in the predicate calculus , 1975, IJCAI 1975.

[103]  Richard Evans,et al.  Learning Explanatory Rules from Noisy Data , 2017, J. Artif. Intell. Res..

[104]  Martin Gebser,et al.  Clingo = ASP + Control: Preliminary Report , 2014, ArXiv.

[105]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[106]  Ashwin Srinivasan,et al.  Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction , 1996, Artif. Intell..

[107]  Stephen Muggleton,et al.  Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning , 2011, PloS one.

[108]  Armando Solar-Lezama,et al.  Learning Libraries of Subroutines for Neurally-Guided Bayesian Program Induction , 2018, NeurIPS.

[109]  Stephen Muggleton,et al.  Alan Turing and the development of Artificial Intelligence , 2014, AI Commun..

[110]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[111]  Stephen Muggleton,et al.  Logical Minimisation of Meta-Rules Within Meta-Interpretive Learning , 2014, ILP.

[112]  Chiaki Sakama,et al.  Learning Multi-valued Biological Models with Delayed Influence from Time-Series Observations , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[113]  Krysia Broda,et al.  Learning Through Hypothesis Refinement Using Answer Set Programming , 2013, ILP.

[114]  Andrew Cropper Learning efficient logic programs , 2018, Machine Learning.

[115]  Wannes Meert,et al.  Learning Relational Representations with Auto-encoding Logic Programs , 2019, IJCAI.

[116]  Alexander Artikis,et al.  Incremental learning of event definitions with Inductive Logic Programming , 2014, Machine Learning.

[117]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[118]  Chong Wang,et al.  Neural Logic Machines , 2019, ICLR.

[119]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[120]  Robert A. Kowalski,et al.  Predicate Logic as Programming Language , 1974, IFIP Congress.

[121]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[122]  Fabrizio Riguzzi,et al.  Structure learning of probabilistic logic programs by searching the clause space , 2013, Theory and Practice of Logic Programming.

[123]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[124]  Raymond J. Mooney,et al.  Comparative results on using inductive logic programming for corpus-based parser construction , 1995, Learning for Natural Language Processing.

[125]  Stephen Muggleton,et al.  Relational Rule Induction with CProgol4.4: A Tutorial Introduction , 2001 .

[126]  Claude Sammut,et al.  The Robot Engineer , 2015, ILP.

[127]  Sebastian Nowozin,et al.  DeepCoder: Learning to Write Programs , 2016, ICLR.

[128]  John McCarthy,et al.  Programs with common sense , 1960 .

[129]  Donald Michie,et al.  Machine Learning in the Next Five Years , 1988, EWSL.

[130]  Stephen Muggleton,et al.  Meta-Interpretive Learning of Data Transformation Programs , 2015, ILP.

[131]  Alessandra Russo,et al.  Inductive Logic Programming in Answer Set Programming , 2011, ILP.

[132]  Raymond J. Mooney,et al.  Automated refinement of first-order horn-clause domain theories , 2005, Machine Learning.

[133]  Stephen Muggleton,et al.  MetaBayes: Bayesian Meta-Interpretative Learning Using Higher-Order Stochastic Refinement , 2013, ILP.

[134]  Michael R. Genesereth,et al.  The International General Game Playing Competition , 2013, AI Mag..

[135]  Zhi-Hua Zhou,et al.  Meta-Interpretive Learning from noisy images , 2018, Machine Learning.

[136]  Stephen Muggleton,et al.  Duce, An Oracle-based Approach to Constructive Induction , 1987, IJCAI.

[137]  Stephen Muggleton,et al.  Towards Machine Learning of Predictive Models from Ecological Data , 2014, ILP.

[138]  Katsumi Inoue,et al.  Completing causal networks by meta-level abduction , 2013, Machine Learning.

[139]  Katsumi Inoue,et al.  ILP turns 20 - Biography and future challenges , 2012, Mach. Learn..

[140]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[141]  Ivan Bratko,et al.  Refining Complete Hypotheses in ILP , 1999, ILP.

[142]  Michael Siebers,et al.  Was the Year 2000 a Leap Year? Step-Wise Narrowing Theories with Metagol , 2018, ILP.

[143]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[144]  Jorge Lobo,et al.  Representing and Learning Grammars in Answer Set Programming , 2019, AAAI.

[145]  Jude W. Shavlik,et al.  Relational Macros for Transfer in Reinforcement Learning , 2007, ILP.

[146]  Ehud Shapiro,et al.  Algorithmic Program Debugging , 1983 .

[147]  William W. Cohen Grammatically Biased Learning: Learning Logic Programs Using an Explicit Antecedent Description Language , 1994, Artif. Intell..

[148]  Krysia Broda,et al.  The complexity and generality of learning answer set programs , 2018, Artif. Intell..

[149]  Sten-Åke Tärnlund,et al.  Horn clause computability , 1977, BIT.

[150]  Vítor Santos Costa,et al.  Inductive Logic Programming , 2013, Lecture Notes in Computer Science.

[151]  Andrew Cropper,et al.  Logical reduction of metarules , 2019, Machine Learning.

[152]  Stephen Muggleton,et al.  Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples , 2009, ILP.

[153]  Guy Van den Broeck,et al.  Active Inductive Logic Programming for Code Search , 2018, 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).

[154]  Peter-Michael Osera,et al.  Type-and-example-directed program synthesis , 2015, PLDI.

[155]  Chiaki Sakama,et al.  Learning from interpretation transition , 2013, Machine Learning.

[156]  Luc De Raedt,et al.  ILP turns 20 , 2011, Machine Learning.

[157]  Leon Sterling,et al.  The Art of Prolog - Advanced Programming Techniques , 1986 .

[158]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[159]  Katsumi Inoue,et al.  Learning Prime Implicant Conditions from Interpretation Transition , 2014, ILP.

[160]  Rolf Morel,et al.  Learning higher-order logic programs , 2019, Machine Learning.

[161]  Rolf Morel,et al.  Typed Meta-interpretive Learning of Logic Programs , 2019, JELIA.

[162]  Aws Albarghouthi,et al.  Syntax-guided synthesis of Datalog programs , 2018, ESEC/SIGSOFT FSE.

[163]  Jesse Davis,et al.  An Efficient Approximation to Lookahead in Relational Learners , 2006, ECML.

[164]  Kristian Kersting,et al.  Neural Networks for Relational Data , 2019, ILP.

[165]  Michael J. Maher Equivalences of Logic Programs , 1988, Foundations of Deductive Databases and Logic Programming..

[166]  Zhi-Hua Zhou,et al.  Bridging Machine Learning and Logical Reasoning by Abductive Learning , 2019, NeurIPS.

[167]  Sumit Gulwani,et al.  Program Synthesis , 2017, Software Systems Safety.

[168]  Ute Schmid,et al.  Inductive Synthesis of Functional Programs: An Explanation Based Generalization Approach , 2006, J. Mach. Learn. Res..

[169]  Alan Fern,et al.  Towards Automatically Setting Language Bias in Relational Learning , 2017, DEEM@SIGMOD.

[170]  Luc De Raedt,et al.  RUTH: an ILP Theory Revision System , 1994, ISMIS.

[171]  Hisao Tamaki,et al.  Unfold/Fold Transformation of Logic Programs , 1984, ICLP.

[172]  Christopher Joseph Pal,et al.  A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms , 2019, ICLR.

[173]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[174]  D. Wolpert On Overfitting Avoidance as Bias , 1993 .

[175]  Stephen Muggleton,et al.  ProGolem: A System Based on Relative Minimal Generalisation , 2009, ILP.

[176]  Aws Albarghouthi,et al.  Constraint-Based Synthesis of Datalog Programs , 2017, CP.

[177]  Stephen H. Muggleton,et al.  Abductive Knowledge Induction From Raw Data , 2020, ArXiv.

[178]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[179]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[180]  Thomas G. Dietterich,et al.  Structured machine learning: the next ten years , 2008, Machine Learning.

[181]  Ashwin Srinivasan,et al.  ILP-assisted de novo drug design , 2016, Machine Learning.

[182]  Krysia Broda,et al.  Iterative Learning of Answer Set Programs from Context Dependent Examples , 2016, Theory and Practice of Logic Programming.

[183]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[184]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[185]  V. S. Costa,et al.  The YAP Prolog system , 2011, Theory and Practice of Logic Programming.

[186]  Ashwin Srinivasan,et al.  Carcinogenesis Predictions Using ILP , 1997, ILP.

[187]  Hendrik Blockeel,et al.  Clustering-Based Relational Unsupervised Representation Learning with an Explicit Distributed Representation , 2016, IJCAI.

[188]  Katsumi Inoue,et al.  Exploiting Answer Set Programming with External Sources for Meta-Interpretive Learning , 2018, Theory Pract. Log. Program..

[189]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[190]  Krysia Broda,et al.  The ILASP system for Inductive Learning of Answer Set Programs , 2020, ArXiv.

[191]  Raymond J. Mooney,et al.  Learning for Semantic Interpretation: Scaling Up without Dumbing Down , 2001, Learning Language in Logic.

[192]  Jorge Lobo,et al.  FastLAS: Scalable Inductive Logic Programming Incorporating Domain-Specific Optimisation Criteria , 2020, AAAI.

[193]  Stephen Muggleton,et al.  Learning Efficient Logical Robot Strategies Involving Composable Objects , 2015, IJCAI.

[194]  Isil Dillig,et al.  Synthesizing data structure transformations from input-output examples , 2015, PLDI.

[195]  Ashwin Srinivasan,et al.  Quantitative pharmacophore models with inductive logic programming , 2006, Machine Learning.

[196]  Rolf Morel,et al.  Learning programs by learning from failures , 2020, ArXiv.

[197]  Stephen Muggleton,et al.  Machine Invention of First Order Predicates by Inverting Resolution , 1988, ML.

[198]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[199]  Jignesh M. Patel,et al.  QuickFOIL: Scalable Inductive Logic Programming , 2014, Proc. VLDB Endow..

[200]  William Yang Wang,et al.  Structure Learning via Parameter Learning , 2014, CIKM.

[201]  Krysia Broda,et al.  Inductive Learning of Answer Set Programs , 2014, JELIA.

[202]  Richard A. Lewis,et al.  Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[203]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[204]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[205]  Maurice Bruynooghe,et al.  Interactive Concept-Learning and Constructive Induction by Analogy , 1992, Machine Learning.

[206]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[207]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[208]  John W. Lloyd,et al.  Practical Advtanages of Declarative Programming , 1994, GULP-PRODE.

[209]  Oliver Ray,et al.  Nonmonotonic abductive inductive learning , 2009, J. Appl. Log..

[210]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[211]  Stephen Muggleton,et al.  Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic , 1999, Artif. Intell..

[212]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[213]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[214]  Martin Gebser,et al.  Conflict-driven answer set solving: From theory to practice , 2012, Artif. Intell..

[215]  Luc De Raedt,et al.  DeepProbLog: Neural Probabilistic Logic Programming , 2018, BNAIC/BENELEARN.

[216]  S. Vera,et al.  Induction of Concepts in the Predicate Calculus , 1975, IJCAI.

[217]  Ryszard S. Michalski,et al.  On the Quasi-Minimal Solution of the General Covering Problem , 1969 .

[218]  Pedro M. Domingos The Role of Occam's Razor in Knowledge Discovery , 1999, Data Mining and Knowledge Discovery.

[219]  Claude Sammut,et al.  The Origins of Inductive Logic Programming: A Prehistoric Tale , 1993 .

[220]  Stephen Muggleton,et al.  Logic and Learning: Turing's legacy , 1994, Machine Intelligence 13.

[221]  Lukasz Kaiser,et al.  Neural GPUs Learn Algorithms , 2015, ICLR.

[222]  Stephen Muggleton,et al.  Application of abductive ILP to learning metabolic network inhibition from temporal data , 2006, Machine Learning.