Estimating index of refraction for material identification in comparison to existing temperature emissivity separation algorithms

As off-nadir viewing platforms become increasingly prevalent in remote sensing, material identification techniques must be robust to changing viewing geometries. Current identification strategies generally rely on estimating reflectivity or emissivity, both of which vary with viewing angle. Presented here is a technique, leveraging polarimetric and hyperspectral imaging (P-HSI), to estimate index of refraction which is invariant to viewing geometry. Results from a quartz window show that index of refraction can be retrieved to within 0.08 rms error from 875-1250 cm-1 for an amorphous material. Results from a silicon carbide (SiC) wafer, which has much sharper features than quartz glass, show the index of refraction can be retrieved to within 0.07 rms error. The results from each of these datasets show an improvement when compared with a maximum smoothness TES algorithm.

[1]  Qiang Liu,et al.  Correlation-based temperature and emissivity separation algorithm , 2008 .

[2]  D. A. Kleinman,et al.  Infrared Properties of Hexagonal Silicon Carbide , 1959 .

[3]  P. S. Kealy,et al.  Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[4]  M. Eismann Hyperspectral Remote Sensing , 2012 .

[5]  Jindi Wang,et al.  A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  V. Thilak,et al.  Estimating the Complex Index of Refraction and View Angle of an Object using Multiple Polarization Measurements , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[7]  J. Soha,et al.  Middle infrared multispectral aircraft scanner data: analysis for geological applications. , 1980, Applied optics.

[8]  Kevin C. Gross,et al.  Calibration methodology and performance characterization of a polarimetric hyperspectral imager , 2014, Sensing Technologies + Applications.

[9]  H. B. Howell,et al.  Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. , 1988, Applied optics.

[10]  B. Javidi,et al.  Passive Polarimetric Imaging , 2014 .

[11]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  D. Voelz,et al.  Polarization-based index of refraction and reflection angle estimation for remote sensing applications. , 2007, Applied optics.

[13]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[14]  Lawrence B. Wolff,et al.  Polarization-Based Material Classification from Specular Reflection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Matthew P. Fetrow,et al.  Results of a new polarization simulation , 2002, SPIE Optics + Photonics.

[16]  K. Watson Two-temperature method for measuring emissivity , 1992 .

[17]  Joel G. Holder Polarimetric Calibration and Characterization of the Telops Field Portable Polarimetric-Hyperspectral Imager , 2014 .

[18]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[19]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[20]  Christoph C. Borel,et al.  Recent advances in temperature-emissivity separation algorithms , 2011, 2011 Aerospace Conference.

[21]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  J. Schott Fundamentals of Polarimetric Remote Sensing , 2009 .

[23]  Cong Phuoc Huynh,et al.  Shape and refractive index recovery from single-view polarisation images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  V. Thilak,et al.  Passive Polarimetric Imagery Based Material Classification For Remote Sensing Applications , 2008, 2008 IEEE Southwest Symposium on Image Analysis and Interpretation.

[25]  Yongming Du,et al.  Multi-layer perceptron neural network based algorithm for simultaneous retrieving temperature and emissivity from hyperspectral FTIR dataset , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[26]  A. Gillespie,et al.  Lithologic mapping of silicate rocks using TIMS , 1986 .

[27]  R. Brendel,et al.  An infrared dielectric function model for amorphous solids , 1992 .

[28]  Charles D. Creusere,et al.  Material Classification using Passive Polarimetric Imagery , 2007, 2007 IEEE International Conference on Image Processing.

[29]  Charles D. Creusere,et al.  Passive Polarimetric Imagery-Based Material Classification Robust to Illumination Source Position and Viewpoint , 2011, IEEE Transactions on Image Processing.