The rebit three-tangle and its relation to two-qubit entanglement

The three-tangle is a measure of three-way entanglement in a system of three qubits. For a pure state, it can be understood as the residual entanglement not accounted for by pairwise entanglements between individual qubits. Here we define and evaluate the analogous quantity for three rebits (that is, binary systems in the real-amplitude variant of quantum theory). We find that the resulting formula is the same as in the complex case, except that an overall absolute value sign is missing. As a result, the rebit three-tangle can be negative, expressing the possibility of non-monogamous entanglement in real-amplitude quantum theory (for entanglement based on the convex-roof construction). We then relate the entanglement among three rebits to the entanglement of two qubits, by re-expressing the two-qubit state as a three-rebit state in the ubit model.This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to '50 years of Bell's theorem'.

[1]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[2]  Samuel Schiminovich,et al.  Foundations of Quaternion Quantum Mechanics , 1962 .

[3]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[4]  G. Papadopoulos,et al.  Spinorial geometry, horizons and superconformal symmetry in six dimensions , 2014, 1404.3976.

[5]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[6]  William K. Wootters,et al.  Entanglement Sharing in Real-Vector-Space Quantum Theory , 2010, 1007.1479.

[7]  N. Gisin,et al.  Simulating quantum systems using real Hilbert spaces. , 2008, Physical review letters.

[8]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[9]  T. Osborne Entanglement measure for rank-2 mixed states , 2002, quant-ph/0203087.

[10]  P. Slater Ratios of maximal concurrence-parameterized separability functions, and generalized Peres–Horodecki conditions , 2009, 0905.0161.

[11]  A. Plastino,et al.  Understanding quantum entanglement: Qubits, rebits and the quaternionic approach , 2003, quant-ph/0603060.

[12]  D. Hestenes Observables, operators, and complex numbers in the Dirac theory , 1975 .

[13]  J. Baez Division Algebras and Quantum Theory , 2011, 1101.5690.

[14]  C. Ross Found , 1869, The Dental register.

[15]  J. Siewert,et al.  Quantifying tripartite entanglement of three-qubit generalized Werner states. , 2012, Physical review letters.

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  A. Uhlmann,et al.  Concurrence and entanglement entropy of stochastic one-qubit maps , 2009, 0903.1340.

[18]  J. Siewert,et al.  Rescaling multipartite entanglement measures for mixed states , 2011, 1109.0977.

[19]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[20]  William K. Wootters,et al.  Real-vector-space quantum theory with a universal quantum bit , 2013 .

[21]  Armin Uhlmann,et al.  Roofs and Convexity , 2010, Entropy.

[22]  C. Fuchs,et al.  Entanglement of Formation of an Arbitrary State of Two Rebits , 2000, quant-ph/0009063.

[23]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[24]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[25]  K. V. Shuddhodan,et al.  Entanglement optimizing mixtures of two-qubit states , 2009, 0910.4504.

[26]  Jing-Ling Chen,et al.  Measure of genuine multipartite entanglement with computable lower bounds , 2011, 1101.2001.

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  M. Kus,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[30]  A. Uhlmann,et al.  Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.

[31]  S. Adler,et al.  Quaternionic quantum mechanics and quantum fields , 1995 .

[32]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[33]  S. Holland,et al.  Orthomodularity in infinite dimensions; a theorem of M. Solèr , 1995 .

[34]  Localized quadripartite entanglement , 2012, 1307.1764.

[35]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.