The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

Abstract. The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I) instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org .

[1]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[2]  W. Emery,et al.  Atmospheric water vapour over oceans from SSM/I measurements , 1990 .

[3]  Clemens Simmer,et al.  SSM/I Brightness temperatures. Corrections for incidence angle variation , 1996 .

[4]  Richard W. Reynolds,et al.  Impact of Mount Pinatubo Aerosols on Satellite-derived Sea Surface Temperatures , 1993 .

[5]  H. Michael Goodman,et al.  Precipitation retrieval over land and ocean with the SSM/I - Identification and characteristics of the scattering signal , 1989 .

[6]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[7]  V. Krasnopolsky,et al.  A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager , 1995 .

[8]  Stuart D. Smith Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature , 1988 .

[9]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[10]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[11]  H. Goodman,et al.  Critical Analyses of Data Differences between FNMOC and AFGWC Spawned SSM/I Datasets , 1998 .

[12]  Ehrhard Raschke Radiation and water in the climate system : remote measurements , 1996 .

[13]  K. S. Shifrin,et al.  Emissivity, thermal albedo and effective emissivity of the sea at different wind speeds , 1988 .

[14]  F. Wentz,et al.  Intercalibrated Passive Microwave Rain Products from the Unified Microwave Ocean Retrieval Algorithm (UMORA) , 2008 .

[15]  Robert A. Weller,et al.  Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables , 2008 .

[16]  S. Bakan,et al.  Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS-3 - twice daily composite , 2007 .

[17]  R. Evans,et al.  Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database , 2001 .

[18]  J. Harries,et al.  On the stability of the Earth's radiative energy balance: Response to the Mt. Pinatubo eruption , 2006 .

[19]  Axel Andersson,et al.  Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation , 2010 .

[20]  P. Schlüssel Satellite Remote Sensing of Evaporation over Sea , 1996 .

[21]  Grant W. Petty,et al.  The response of the SSM/I to the marine environment. Part 2: A parameterization of the effect of the sea surface slope distribution on emission and reflection , 1994 .

[22]  M. A. Goodberlet,et al.  Remote sensing of ocean surface winds with the special sensor microwave/imager , 1989 .

[23]  Axel Andersson,et al.  Evaluation of HOAPS-3 Ocean Surface Freshwater Flux Components , 2011 .

[24]  Peter Bauer,et al.  Multiple‐scattering microwave radiative transfer for data assimilation applications , 2006 .

[25]  M. Kubota,et al.  Introduction of J-OFURO latent heat Flux Version 2 , 2007 .

[26]  P. Bauer Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part I: Design and Evaluation of Inversion Databases , 2001 .

[27]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[28]  D. Stammer,et al.  Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP , 2010 .

[29]  P. Schluessel,et al.  The Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data (HOAPS): A climatological atlas of satellite-derived air-sea interaction parameters over the world oceans , 2000 .

[30]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[31]  William J. Webster,et al.  Spectral characteristics of the microwave emission from a wind-driven foam-covered sea , 1976 .

[32]  Robert Atlas,et al.  A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products , 2004 .

[33]  R. Atlas,et al.  Surface Turbulent Heat and Momentum Fluxes over Global Oceans Based on the Goddard Satellite Retrievals, Version 2 (GSSTF2) , 2003 .

[34]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[35]  Paul R. Lowe,et al.  The Computation of Saturation Vapor Pressure , 1974 .

[36]  M. Kubota,et al.  Intercomparison of Various Surface Latent Heat Flux Fields , 2003 .

[37]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[38]  James P. Hollinger,et al.  SSM/I instrument evaluation , 1990 .

[39]  Peter Bauer,et al.  Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data , 1993 .

[40]  H. Grassl,et al.  Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements , 1993 .

[41]  Stephan Bakan,et al.  HOAPS: A new satellite-derived freshwater flux climatology , 2002 .

[42]  Grant W. Petty,et al.  The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures , 1992 .

[43]  Axel Andersson,et al.  Comparison of HOAPS, QuikSCAT, and Buoy Wind Speed in the Eastern North Atlantic and the North Sea , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[45]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[46]  Paul R. Houser,et al.  Assessing a Satellite-Era Perspective of the Global Water Cycle , 2007 .

[47]  R. Ramseier,et al.  An algorithm to measure sea ice concentration with microwave radiometers , 1985 .

[48]  Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY , 2010 .

[49]  Abderrahim Bentamy,et al.  Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans , 2003 .

[50]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Gene A. Poe,et al.  Intersensor calibration of DMSP SSM/I's: F-8 to F-14, 1987-1997 , 1999, IEEE Trans. Geosci. Remote. Sens..

[52]  P. Schluessel,et al.  Surface wind speeds over the North Sea from special sensor microwave/imager observations , 1991 .

[53]  N. Wells,et al.  Parametrization of tropical ocean heat flux , 1990 .

[54]  W. Timothy Liu,et al.  Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes , 1994 .

[55]  Peter Bauer,et al.  Implementation of 1D+4D‐Var assimilation of precipitation‐affected microwave radiances at ECMWF. II: 4D‐Var , 2006 .

[56]  C. T. Butler,et al.  Ocean surface wind retrievals from special sensor microwave imager data with neural networks , 1994 .