A Cognitive Approach to Scientific Data Mining for Syndrome Discovery: A Case-Study in Dermatology

The author introduces a machine learning system for cluster analysis to take on the problem of syndrome discovery in the clinical domain. A syndrome is a set of typical clinical features a prototype that appear together often enough to suggest they may represent a single, unknown, disease. The discovery of syndromes and relative taxonomy formation is therefore the critical early phase of the process of scientific discovery in the medical domain. The system proposed discovers syndromes following Eleanor Rosch's prototype theory on how the human mind categorizes and forms taxonomies, and thereby to understand how humans perform these activities and to automate or assist the process of scientific discovery. The system implemented can be considered a scientific discovery support system as it can discover unknown syndromes to the advantage of subsequent clinical practices and research activities.

[1]  Rangaraj M. Rangayyan,et al.  Classification of Breast Masses in Mammograms Using Radial Basis Functions and Simulated Annealing , 2009, Int. J. Cogn. Informatics Nat. Intell..

[2]  C. L. Hull Principles of behavior : an introduction to behavior theory , 1943 .

[3]  Francesco Gagliardi,et al.  Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction , 2011, Artif. Intell. Medicine.

[4]  Vijay V. Raghavan,et al.  Genetic Algorithm for Clustering with an Ordered Representation , 1991, ICGA.

[5]  Mohamed Medhat Gaber,et al.  Scientific Data Mining and Knowledge Discovery - Principles and Foundations , 2009 .

[6]  M. Boden,et al.  Mind As Machine: A History of Cognitive Science Two-Volume Set , 2006 .

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[9]  Yiyu Yao,et al.  Perspectives on Cognitive Informatics and Cognitive Computing , 2010, Int. J. Cogn. Informatics Nat. Intell..

[10]  Paul Thagard,et al.  Explaining Disease: Correlations, Causes, and Mechanisms , 1998, Minds and Machines.

[11]  Yi Hong,et al.  To combine steady-state genetic algorithm and ensemble learning for data clustering , 2008, Pattern Recognit. Lett..

[12]  B. Everitt,et al.  An Attempt at Validation of Traditional Psychiatric Syndromes by Cluster Analysis , 1971, British Journal of Psychiatry.

[13]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[14]  Farjana Z. Eishita,et al.  Occlusion Handling in Object Detection , 2012 .

[15]  P. Thagard,et al.  Mind: Introduction to cognitive science, 2nd ed. , 2005 .

[16]  P. Langley,et al.  Computational Models of Scientific Discovery and Theory Formation , 1990 .

[17]  D L Medin,et al.  Concepts and conceptual structure. , 1989, The American psychologist.

[18]  H. Brownell,et al.  Category differentiation in object recognition: typicality constraints on the basic category advantage. , 1985, Journal of experimental psychology. Learning, memory, and cognition.

[19]  Roberto Cordeschi,et al.  The Discovery of the Artificial. Behavior, Mind and Machines Before and Beyond Cybernetics , 2010, Studies in Cognitive Systems.

[20]  Francesco Gagliardi The Necessity of Machine Learning and Epistemology in the Development of Categorization Theories: A Case Study in Prototype-Exemplar Debate , 2009, AI*IA.

[21]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[22]  Marina L. Gavrilova,et al.  A Novel Cross Folding Algorithm for Multimodal Cancelable Biometrics , 2012, Int. J. Softw. Sci. Comput. Intell..

[23]  P. Thagard,et al.  Computational Philosophy of Science , 1988 .

[24]  Robert A. Wilson,et al.  Book Reviews: The MIT Encyclopedia of the Cognitive Sciences , 2000, CL.

[25]  Babita Pandey,et al.  Knowledge and intelligent computing system in medicine , 2009, Comput. Biol. Medicine.

[26]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[27]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[28]  Saso Dzeroski,et al.  Computational Discovery of Scientific Knowledge , 2007, Computational Discovery of Scientific Knowledge.

[29]  Categorization and Similarity Models , 2001 .

[30]  Pat Langley The computational support of scientific discovery , 2000, Int. J. Hum. Comput. Stud..

[31]  Haibo He,et al.  Advances in Knowledge Discovery and Data Analysis for Artificial Intelligence , 2011, J. Exp. Theor. Artif. Intell..

[32]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[33]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[34]  John F. Sowa CATEGORIZATION IN COGNITIVE COMPUTER SCIENCE , 2005 .

[35]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[36]  Malik Peiris,et al.  Aetiology: Koch's postulates fulfilled for SARS virus , 2003, Nature.

[37]  Elif Derya Übeyli,et al.  Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems , 2004, Comput. Biol. Medicine.

[38]  G. Murphy Parts in object concepts: Experiments with artificial categories , 1991, Memory & cognition.

[39]  Christophe G. Giraud-Carrier,et al.  Unifying Learning with Evolution Through Baldwinian Evolution and Lamarckism , 2000, Advances in Computational Intelligence and Learning.

[40]  Pat Langley,et al.  Constructing explanatory process models from biological data and knowledge , 2006, Artif. Intell. Medicine.

[41]  Pat Langley,et al.  The Computer-Aided Discovery of Scientific Knowledge , 1998, Discovery Science.

[42]  Xiangfeng Luo,et al.  Measuring Textual Context Based on Cognitive Principles , 2009, Int. J. Softw. Sci. Comput. Intell..

[43]  Mario Alai,et al.  A.I., Scientific Discovery and Realism , 2004, Minds and Machines.

[44]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[45]  Francesco Gagliardi,et al.  Some Issues About Cognitive Modelling and Functionalism , 2007, AI*IA.

[46]  Giuseppe Trautteur Problems with symbols. A commentary to Herbert Simon, “Scientific discovery as problem solving” , 1992 .

[47]  Pat Langley,et al.  Two Kinds of Knowledge in Scientific Discovery , 2010, Top. Cogn. Sci..

[48]  Jon Williamson,et al.  The Philosophy of Science and its relation to Machine Learning , 2009, Scientific Data Mining and Knowledge Discovery.

[49]  Emilio Soria Olivas,et al.  Handbook of Research on Machine Learning Applications and Trends : Algorithms , Methods , and Techniques , 2009 .

[50]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[51]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[52]  Kazem Sadegh-Zadeh,et al.  Fundamentals of clinical methodology: 2. Etiology , 1998, Artif. Intell. Medicine.

[53]  Xianda Zhang,et al.  A genetic algorithm with gene rearrangement for K-means clustering , 2009, Pattern Recognit..

[54]  Benjamin King Step-Wise Clustering Procedures , 1967 .

[55]  Herbert A. Simon,et al.  Scientific discovery: compulalional explorations of the creative process , 1987 .

[56]  Yiyu Yao,et al.  User-centered Interactive Data Mining , 2006, 2006 5th IEEE International Conference on Cognitive Informatics.

[57]  Paul Thagard,et al.  Coherence, Truth, and the Development of Scientific Knowledge* , 2007, Philosophy of Science.

[58]  Roberto Cordeschi A few words on representation and meaning , 1992 .

[59]  K. J. Craik,et al.  The nature of explanation , 1944 .

[60]  A. B. M. Shawkat Ali,et al.  Multidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicine , 2012 .

[61]  H. Altay Güvenir,et al.  Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals , 1998, Artif. Intell. Medicine.

[62]  Kevin B. Korb,et al.  Introduction: Machine Learning as Philosophy of Science , 2004, Minds and Machines.

[63]  M. Narasimha Murty,et al.  A near-optimal initial seed value selection in K-means means algorithm using a genetic algorithm , 1993, Pattern Recognit. Lett..

[64]  D. Gentner,et al.  The analogical mind : perspectives from cognitive science , 2001 .

[65]  T. Ravindra Babu,et al.  Comparison of genetic algorithm based prototype selection schemes , 2001, Pattern Recognit..

[66]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[67]  H. A Güvenir,et al.  An expert system for the differential diagnosis of erythemato-squamous diseases , 2000 .

[68]  E. Smith,et al.  Psychiatric diagnosis as prototype categorization. , 1980, Journal of abnormal psychology.

[69]  J. Anitha,et al.  A Hybrid Genetic Algorithm based Fuzzy Approach for Abnormal Retinal Image Classification , 2010, Int. J. Cogn. Informatics Nat. Intell..

[70]  Yingxu Wang,et al.  The Theoretical Framework of Cognitive Informatics , 2007, Int. J. Cogn. Informatics Nat. Intell..

[71]  Donald Gillies,et al.  Artificial intelligence and scientific method , 1996 .

[72]  Krzysztof J. Cios,et al.  Uniqueness of medical data mining , 2002, Artif. Intell. Medicine.

[73]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[74]  Jean Sallantin,et al.  Human Discovery and Machine Learning , 2008, Int. J. Cogn. Informatics Nat. Intell..