Spline Multiscale Smoothing to Control FDR for Exploring Features of Regression Curves

SiZer (significant zero crossing of the derivatives) is a multiscale smoothing method for exploring trends, maxima, and minima in data. In this article, a regression spline version of SiZer is proposed in a nonparametric regression setting by the fiducial method. The number of knots for spline interpolation is used as the scale parameter of the new SiZer, which controls the smoothness of estimate. In the construction of the new SiZer, multiple testing adjustment is made to control the row-wise false discovery rate (FDR) of SiZer. This adjustment is appealing for exploratory data analysis and has potential to increase the power. A special map is also produced on a continuous scale using p-values to assess the significance of features. Simulations and a real data application are carried out to investigate the performance of the proposed SiZer, in which several comparisons with other existing SiZers are presented. Supplementary materials for this article are available online.

[1]  James Stephen Marron,et al.  SiZer for length biased, censored density and hazard estimation , 2004 .

[2]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[3]  P. Fryzlewicz Discussion: Time-threshold maps: Using information from wavelet reconstructions with all threshold values simultaneously , 2012 .

[4]  J. S. Marron,et al.  Long-range dependence in a changing Internet traffic mix , 2005, Comput. Networks.

[5]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[6]  Jan Hannig,et al.  Nonparametric Comparison of Multiple Regression Curves in Scale-Space , 2014 .

[7]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[8]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[9]  J. S. Marron,et al.  SiZer for time series: A new approach to the analysis of trends , 2007, 0706.4190.

[10]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[11]  Linda H. Zhao,et al.  Free‐knot polynomial splines with confidence intervals , 2003 .

[12]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[13]  Stein Olav Skrøvseth,et al.  Scale Space Methods for Analysis of Type 2 Diabetes Patients' Blood Glucose Values , 2011, Comput. Math. Methods Medicine.

[14]  Jan Hannig,et al.  Fiducial theory for free-knot splines , 2014 .

[15]  Lasse Holmström,et al.  Bayesian Multiscale Smoothing for Making Inferences About Features in Scatterplots , 2005 .

[16]  Jan Hannig,et al.  Improved sizer for time series , 2009 .

[17]  C. S. Kim SiZer for jump detection , 1999 .

[18]  Todd Iverson,et al.  Generalized fiducial inference , 2014 .

[19]  Rory A. Fisher,et al.  The concepts of inverse probability and fiducial probability referring to unknown parameters , 1933 .

[20]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[21]  Michael H. Neumann,et al.  Exact Risk Analysis of Wavelet Regression , 1998 .

[22]  Fred Godtliebsen,et al.  Bayesian multiscale analysis for time series data , 2006, Comput. Stat. Data Anal..

[23]  Samaradasa Weerahandi,et al.  Generalized Confidence Intervals , 1993 .

[24]  A. P. Dawid,et al.  The Functional-Model Basis of Fiducial Inference , 1982 .

[25]  James Stephen Marron,et al.  Advanced Distribution Theory for SiZer , 2006 .

[26]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[27]  James Stephen Marron,et al.  Dependent SiZer: Goodness-of-Fit Tests for Time Series Models , 2004 .

[28]  James Stephen Marron,et al.  Sizer for smoothing splines , 2005, Comput. Stat..

[29]  Cheolwoo Park,et al.  SiZer analysis for the comparison of regression curves , 2008, Comput. Stat. Data Anal..

[30]  Runze Li,et al.  Local Likelihood SiZer Map , 2005 .

[31]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[32]  Xingzhong Xu,et al.  Fiducial inference in the pivotal family of distributions , 2006 .

[33]  Jan Hannig,et al.  Multiscale Exploratory Analysis of Regression Quantiles Using Quantile SiZer , 2010 .

[34]  Guoying Li,et al.  A fiducial argument for generalized p-value , 2007 .

[35]  Mary J. Lindstrom,et al.  Penalized Estimation of Free-Knot Splines , 1999 .

[37]  Jan Hannig,et al.  Robust SiZer for Exploration of Regression Structures and Outlier Detection , 2006 .

[38]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .