Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells

[1]  Wen-Hau Zhang,et al.  Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer , 2019, Nano Energy.

[2]  Wen-Hau Zhang,et al.  Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges , 2019, Advanced Functional Materials.

[3]  S. Seok,et al.  Stabilization of Precursor Solution and Perovskite Layer by Addition of Sulfur , 2019, Advanced Energy Materials.

[4]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[5]  J. Caro,et al.  Inside Cover: Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2 /CH4 Separation (Angew. Chem. Int. Ed. 1/2019) , 2018, Angewandte Chemie International Edition.

[6]  Martin A. Green,et al.  Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells , 2018, Joule.

[7]  Chunhui Huang,et al.  Metal Halide Perovskite Materials for Solar Cells with Long‐Term Stability , 2018, Advanced Energy Materials.

[8]  Wei Huang,et al.  Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies , 2018, Advanced Functional Materials.

[9]  Wen-Hau Zhang,et al.  Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells , 2018, Advanced materials.

[10]  R. Friend,et al.  Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability , 2018, ACS energy letters.

[11]  Zhen Li,et al.  Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology , 2018, Joule.

[12]  H. Boyen,et al.  Gas Quenching for Perovskite Thin Film Deposition , 2018, Joule.

[13]  Jianbin Xu,et al.  Fused‐Ring Electron Acceptor ITIC‐Th: A Novel Stabilizer for Halide Perovskite Precursor Solution , 2018 .

[14]  A. Du,et al.  Hindered Formation of Photoinactive δ-FAPbI3 Phase and Hysteresis-Free Mixed-Cation Planar Heterojunction Perovskite Solar Cells with Enhanced Efficiency via Potassium Incorporation. , 2018, The journal of physical chemistry letters.

[15]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[16]  Frank S. Barnes,et al.  Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions , 2018 .

[17]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[18]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[19]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[20]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[21]  T. Bein,et al.  Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites , 2017 .

[22]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[23]  Xiaofan Deng,et al.  High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching , 2017 .

[24]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[25]  H. Boyen,et al.  A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families , 2016, Advanced materials.

[26]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[27]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[28]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[29]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[30]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[31]  Miaoqiang Lyu,et al.  Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. , 2015, Chemical communications.

[32]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[33]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[34]  Miaoqiang Lyu,et al.  Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3-x)Cl(x) films. , 2014, Chemical communications.

[35]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[36]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[37]  K. Ho,et al.  Ruthenium complex dye with designed ligand capable of chelating triiodide anion for dye-sensitized solar cells , 2013 .

[38]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[39]  P. Pagés,et al.  FTIR spectroscopy study of the interaction between fibre of polyamide 6 and iodine , 2005 .