ssbio: A Python Framework for Structural Systems Biology

Summary Working with protein structures at the genome-scale has been challenging in a variety of ways. Here, we present ssbio, a Python package which provides a framework to easily work with structural information in the context of genome-scale network reconstructions. The ssbio package provides an automated pipeline to construct high quality genome-scale models with protein structures (GEM-PROs), intuitively linking 3D structural data with established systems workflows. Availability and Implementation ssbio is implemented in Python and available to download under the MIT license at http://github.com/SBRG/ssbio. Documentation and Jupyter notebook tutorials are available at http://ssbio.readthedocs.io/en/latest/. Contact nmih@ucsd.edu Supplementary Information Supplementary data are available at bioRxiv.

[1]  Edward J. O'Brien,et al.  Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale , 2014, BMC Systems Biology.

[2]  Adam M. Feist,et al.  iML1515, a knowledgebase that computes Escherichia coli traits , 2017, Nature Biotechnology.

[3]  Roger L. Chang,et al.  Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli , 2013, Science.

[4]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[5]  Alexander S. Rose,et al.  NGLview–interactive molecular graphics for Jupyter notebooks , 2018, Bioinform..

[6]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[7]  Zhen Zhang,et al.  Systems biology of the structural proteome , 2016, BMC Systems Biology.

[8]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[9]  Wai Ong,et al.  Comparisons of Shewanella strains based on genome annotations, modeling, and experiments , 2014, BMC Systems Biology.

[10]  Ines Thiele,et al.  Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima , 2009, Science.

[11]  Jared T. Broddrick,et al.  Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis , 2016, Proceedings of the National Academy of Sciences.

[12]  Philip E. Bourne,et al.  Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model , 2010, PLoS Comput. Biol..

[13]  Marco Fondi,et al.  Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity , 2016, Proceedings of the National Academy of Sciences.

[14]  Julio Saez-Rodriguez,et al.  BioServices: a common Python package to access biological Web Services programmatically , 2013, Bioinform..

[15]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[16]  Bernard Manderick,et al.  PDB file parser and structure class implemented in Python , 2003, Bioinform..

[17]  Michael Nilges,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btl655 Structural bioinformatics Biskit—A software platform for structural bioinformatics , 2006 .

[18]  Marco Biasini,et al.  OpenStructure: a flexible software framework for computational structural biology , 2010, Bioinform..

[19]  Kei Yura,et al.  [Structural bioinformatics]. , 2009, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[20]  Wes McKinney,et al.  Python for Data Analysis , 2012 .

[21]  Elizabeth Brunk,et al.  A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism , 2016, PLoS Comput. Biol..

[22]  H. Kitano,et al.  Software for systems biology: from tools to integrated platforms , 2011, Nature Reviews Genetics.

[23]  C. Kiel,et al.  Structures in systems biology. , 2007, Current opinion in structural biology.

[24]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[25]  Lukasz Kurgan,et al.  Covering complete proteomes with X-ray structures: a current snapshot , 2014, Acta crystallographica. Section D, Biological crystallography.

[26]  Edward J. O'Brien,et al.  Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation , 2017, Proceedings of the National Academy of Sciences.

[27]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[28]  Joshua A. Lerman,et al.  Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments , 2013, Proceedings of the National Academy of Sciences.

[29]  Pierre Baldi,et al.  SCRATCH: a protein structure and structural feature prediction server , 2005, Nucleic Acids Res..

[30]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[31]  Bernhard O. Palsson,et al.  Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways , 2015, PLoS Comput. Biol..

[32]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[33]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[34]  Fabian A. Buske,et al.  Aquaria: simplifying discovery and insight from protein structures , 2015, Nature Methods.

[35]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[36]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[37]  Adam M. Feist,et al.  Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. , 2016, Cell systems.