Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data

Abstract This paper is devoted to determine the fractional order, the initial flux speed and the boundary Neumann data simultaneously in a one-dimensional time-fractional diffusion-wave equation from part boundary Cauchy observation data. We prove the uniqueness result for this inverse problem by using a new result for the Mittag-Leffler function and Laplace transform combining with analytic continuation. Then we use the iterative regularizing ensemble Kalman method in Bayesian framework to solve the inverse problem numerically. And four numerical examples are provided to show the effectiveness and stability of the proposed algorithm.

[1]  Marco A. Iglesias,et al.  A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems , 2015, 1505.03876.

[2]  J. Klafter,et al.  Subdiffusive transport close to thermal equilibrium: from the langevin equation to fractional diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Wen Zhang,et al.  Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation , 2018, Appl. Math. Comput..

[4]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[5]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[6]  S B Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001, Physical review letters.

[7]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[8]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[9]  T. Wei,et al.  Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation , 2018, Inverse Problems in Science and Engineering.

[10]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[11]  Masahiro Yamamoto,et al.  On the uniqueness and reconstruction for an inverse problem of the fractional diffusion process , 2015 .

[12]  Masahiro Yamamoto,et al.  Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation , 2013 .

[13]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[15]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[16]  W. Wyss The fractional diffusion equation , 1986 .

[17]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[18]  Liang Yan,et al.  Weighted Approximate Fekete Points: Sampling for Least-Squares Polynomial Approximation , 2017, SIAM J. Sci. Comput..

[19]  Yun Zhang,et al.  The backward problem for a time-fractional diffusion-wave equation in a bounded domain , 2018, Comput. Math. Appl..

[20]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[21]  M. Slodicka,et al.  Recognition of a time-dependent source in a time-fractional wave equation , 2017 .

[22]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  T. Wei,et al.  Determination of the initial data in a time-fractional diffusion-wave problem by a final time data , 2019, Comput. Math. Appl..

[25]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[26]  T. Wei,et al.  Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously , 2019, Inverse Problems.

[27]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[28]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[29]  Liang Yan,et al.  Convergence analysis of surrogate-based methods for Bayesian inverse problems , 2017 .

[30]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[31]  Y. Povstenko Linear Fractional Diffusion-Wave Equation for Scientists and Engineers , 2015 .

[32]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[33]  Ling Guo,et al.  Stochastic Collocation Algorithms Using l1-Minimization for Bayesian Solution of Inverse Problems , 2015, SIAM J. Sci. Comput..

[34]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[35]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[36]  Marco A. Iglesias,et al.  Parameterizations for ensemble Kalman inversion , 2017, 1709.01781.

[37]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[38]  Masahiro Yamamoto,et al.  On the reconstruction of unknown time-dependent boundary sources for time fractional diffusion process by distributing measurement , 2015 .

[39]  Geir Evensen,et al.  Analysis of iterative ensemble smoothers for solving inverse problems , 2018, Computational Geosciences.

[40]  Yury Luchko,et al.  Maximum principle and its application for the time-fractional diffusion equations , 2011 .

[41]  Masahiro Yamamoto,et al.  A backward problem for the time-fractional diffusion equation , 2010 .

[42]  T. Wei,et al.  Stable numerical solution to a Cauchy problem for a time fractional diffusion equation , 2014 .

[43]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[44]  Yuan-Xiang Zhang,et al.  Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation , 2018, Inverse Problems.

[45]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[46]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[47]  Changpin Li,et al.  Numerical Solution of Fractional Diffusion-Wave Equation , 2016 .

[48]  Marco A. Iglesias,et al.  Iterative regularization for ensemble data assimilation in reservoir models , 2014, Computational Geosciences.

[49]  Marco A. Iglesias,et al.  Filter Based Methods For Statistical Linear Inverse Problems , 2015, 1512.01955.