Electrochemically driven dynamic plasmonics

Abstract. Dynamic plasmonics with the real-time active control capability of plasmonic resonances attracts much interest in the communities of physics, chemistry, and material science. Among versatile reconfigurable strategies for dynamic plasmonics, electrochemically driven strategies have garnered most of the attention. We summarize three primary strategies to enable electrochemically dynamic plasmonics, including structural transformation, carrier-density modulation, and electrochemically active surrounding-media manipulation. The reconfigurable microstructures, optical properties, and underlying physical mechanisms are discussed in detail. We also summarize the most promising applications of dynamic plasmonics, including smart windows, structural color displays, and chemical sensors. We suggest more research efforts toward the widespread applications of dynamic plasmonics.

[1]  C. Landes,et al.  Electrodissolution Inhibition of Gold Nanorods with Oxoanions , 2019, The Journal of Physical Chemistry C.

[2]  A. Kornyshev,et al.  Optical response of electro-tuneable 3D superstructures of plasmonic nanoparticles self-assembling on transparent columnar electrodes. , 2019, Optics express.

[3]  Na Liu,et al.  Magnesium for Dynamic Nanoplasmonics , 2019, Accounts of chemical research.

[4]  E. Lacaze,et al.  Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonics Applications , 2015 .

[5]  Evan L. Runnerstrom,et al.  Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.

[6]  P. Nordlander,et al.  Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. , 2017, The journal of physical chemistry letters.

[7]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[8]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[9]  A. Kornyshev,et al.  Electrotunable nanoplasmonic liquid mirror. , 2017, Nature materials.

[10]  Paul Mulvaney,et al.  Electrochemical charging of single gold nanorods. , 2009, Journal of the American Chemical Society.

[11]  S. Dong,et al.  Probing UPD-Induced Surface Atomic Rearrangement of Polycrystalline Gold Nanofilms with Surface Plasmon Resonance Spectroscopy and Cyclic Voltammetry , 2003 .

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  A. Kornyshev,et al.  Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces , 2016, Scientific Reports.

[14]  Michele Manca,et al.  Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes , 2016 .

[15]  Michael J. Ford,et al.  Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold , 2007 .

[16]  Jia Zhu,et al.  Plasmon-enhanced solar vapor generation , 2019, Nanophotonics.

[17]  J. Baumberg,et al.  Scalable electrochromic nanopixels using plasmonics , 2019, Science Advances.

[18]  Harald Giessen,et al.  Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. , 2015, Nano letters.

[19]  H. Atwater,et al.  Electrochemical Tuning of the Dielectric Function of Au Nanoparticles , 2015 .

[20]  A. Kornyshev,et al.  Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. , 2016, Physical chemistry chemical physics : PCCP.

[21]  Jakub Dostalek,et al.  Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[22]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[23]  A. Kornyshev,et al.  Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. , 2013, ACS nano.

[24]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[25]  Seunghun Hong,et al.  Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods. , 2018, Nano letters.

[26]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[27]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[28]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[29]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[30]  H. Duan,et al.  Dynamic Color Displays Using Stepwise Cavity Resonators. , 2017, Nano letters.

[31]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[32]  C. Moon,et al.  Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator , 2017 .

[33]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[34]  A. Kornyshev,et al.  Electrotunable Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. , 2019, ACS nano.

[35]  Bai-Ou Guan,et al.  Ultrasensitive plasmonic sensing in air using optical fibre spectral combs , 2016, Nature Communications.

[36]  Le He,et al.  Magnetic tuning of plasmonic excitation of gold nanorods. , 2013, Journal of the American Chemical Society.

[37]  I. Yamaguchi,et al.  All-optical spatial light modulator with surface plasmon resonance. , 1993, Optics letters.

[38]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[39]  David R. Smith,et al.  Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. , 2012, Nano letters.

[40]  S. Oikawa,et al.  Nanoscale control of plasmon-active metal nanodimer structures via electrochemical metal dissolution reaction , 2018, Nanotechnology.

[41]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[42]  Shin‐Tson Wu,et al.  Mini-LED, Micro-LED and OLED displays: present status and future perspectives , 2020, Light, science & applications.

[43]  Guofa Cai,et al.  Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity , 2015, Chemical science.

[44]  S. Oikawa,et al.  Reversible Electrochemical Tuning of Optical Property of Single Au Nano-bridged Structure via Electrochemical under Potential Deposition , 2017 .

[45]  Xuechen Chen,et al.  Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning. , 2016, ACS nano.

[46]  Ji‐Guang Zhang,et al.  Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions , 2019, Nature Nanotechnology.

[47]  Andreas B. Dahlin,et al.  Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color , 2016, Advanced materials.

[48]  Marc Christophersen,et al.  Recent patents on electrophoretic displays and materials. , 2010, Recent patents on nanotechnology.

[49]  Delia J. Milliron,et al.  Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals. , 2015, Journal of the American Chemical Society.

[50]  Michael D. McGehee,et al.  Dynamic Windows with Neutral Color, High Contrast, and Excellent Durability Using Reversible Metal Electrodeposition , 2017 .

[51]  Andrea Alù,et al.  Roadmap on metasurfaces , 2019, Journal of Optics.

[52]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[53]  Zhiyi Zhang,et al.  Thermo-optic coefficients of polymers for optical waveguide applications , 2006 .

[54]  A. Kornyshev,et al.  Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. , 2016, Chemical Society reviews.

[55]  Yan Jin,et al.  Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition , 2020, Advanced materials.

[56]  Shin-Tson Wu,et al.  Actively addressed single pixel full-colour plasmonic display , 2017, Nature Communications.

[57]  S. Oikawa,et al.  Electrochemical Fine Tuning of the Plasmonic Properties of Au Lattice Structures , 2018 .

[58]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[59]  Alexei A Kornyshev,et al.  Self-assembled nanoparticle arrays for multiphase trace analyte detection. , 2013, Nature materials.

[60]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[61]  F. Rawson,et al.  New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. , 2014, Analytical chemistry.

[62]  Lei Zhang,et al.  Lead Halide Perovskite Nanostructures for Dynamic Color Display. , 2018, ACS nano.

[63]  Yan Jin,et al.  In operando plasmonic monitoring of electrochemical evolution of lithium metal , 2018, Proceedings of the National Academy of Sciences.

[64]  Peter Nordlander,et al.  High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. , 2016, ACS nano.

[65]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[66]  A. Kornyshev,et al.  Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters. , 2017, Faraday discussions.

[67]  N. Kobayashi,et al.  A Localized Surface Plasmon Resonance‐Based Multicolor Electrochromic Device with Electrochemically Size‐Controlled Silver Nanoparticles , 2013, Advanced materials.

[68]  Yiqun Zheng,et al.  Dynamic color-switching of plasmonic nanoparticle films. , 2019, Angewandte Chemie.

[69]  Jia Zhu,et al.  Stable, high-performance sodium-based plasmonic devices in the near infrared , 2020, Nature.

[70]  Jianfang Wang,et al.  Advanced Plasmonic Materials for Dynamic Color Display , 2018, Advanced materials.

[71]  A. Kornyshev,et al.  Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation. , 2017, Faraday discussions.

[72]  C. Landes,et al.  Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry , 2018 .

[73]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[74]  이정환,et al.  Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes , 2015 .

[75]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[76]  Gary M. Koenig,et al.  Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals , 2007 .

[77]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[78]  Yi Cui,et al.  Self-limited plasmonic welding of silver nanowire junctions. , 2012, Nature materials.

[79]  A. Kornyshev,et al.  Auxetic Thermoresponsive Nanoplasmonic Optical Switch. , 2019, ACS applied materials & interfaces.

[80]  G. Ozin,et al.  Single‐Stimulus‐Induced Modulation of Multiple Optical Properties , 2019, Advanced materials.

[81]  Paul Mulvaney,et al.  Spectroelectrochemistry of colloidal silver , 1997 .

[82]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[83]  A. Kornyshev Electrochemical metamaterials , 2020, Journal of Solid State Electrochemistry.

[84]  T. Ebbesen,et al.  Terahertz All‐Optical Molecule‐ Plasmon Modulation , 2006 .

[85]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[86]  Tim Liedl,et al.  DNA-Assembled Advanced Plasmonic Architectures. , 2018, Chemical reviews.

[87]  Dayne F. Swearer,et al.  From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties , 2015, Science Advances.

[88]  Jia Zhu,et al.  Dual functional asymmetric plasmonic structures for solar water purification and pollution detection , 2018, Nano Energy.

[89]  Chao Zhang,et al.  Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. , 2017, Nano letters.

[90]  A. Kornyshev,et al.  An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials , 2019, Nanophotonics.

[91]  Shin-Tson Wu,et al.  Liquid crystal display and organic light-emitting diode display: present status and future perspectives , 2017, Light: Science & Applications.

[92]  Rupert F. Oulton,et al.  Applications of nanolasers , 2018, Nature Nanotechnology.

[93]  A. Kornyshev,et al.  A Tunable Nanoplasmonic Mirror at an Electrochemical Interface , 2018, ACS Photonics.

[94]  Michael D. McGehee,et al.  Hybrid dynamic windows using reversible metal electrodeposition and ion insertion , 2019, Nature Energy.

[95]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[96]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[97]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[98]  A. Alec Talin,et al.  High-contrast and fast electrochromic switching enabled by plasmonics , 2016, Nature Communications.

[99]  Jianfang Wang,et al.  Active Plasmonics: Principles, Structures, and Applications. , 2017, Chemical reviews.

[100]  C. Landes,et al.  Spectroelectrochemistry of Halide Anion Adsorption and Dissolution of Single Gold Nanorods , 2016 .

[101]  D. Kolb,et al.  Potential-induced structure transitions in self-assembled monolayers : ethanethiol on Au(100) , 2001 .

[102]  Wenxiao Wang,et al.  Hot Holes Assist Plasmonic Nanoelectrode Dissolution. , 2019, Nano letters.

[103]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[104]  Delia J. Milliron,et al.  Near‐Infrared Spectrally Selective Plasmonic Electrochromic Thin Films , 2013 .

[105]  A. Henglein,et al.  Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles , 1991 .

[106]  Yang Zhou,et al.  Emerging Thermal‐Responsive Materials and Integrated Techniques Targeting the Energy‐Efficient Smart Window Application , 2018 .

[107]  R. Goodacre,et al.  Electrochemical modulation of SERS at the liquid/liquid interface. , 2014, Chemical communications.

[108]  N. Engheta,et al.  High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. , 2017, Nature nanotechnology.

[109]  J. Takahara,et al.  Electromechanically Tunable Plasmonic Nanowires Operating in Visible Wavelengths , 2016 .

[110]  Bin Zhu,et al.  Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation , 2016, Science Advances.

[111]  E. Hopmann,et al.  Plasmochromic nanocavity dynamic light color switching. , 2020, Nano letters.