Amenable actions of nonamenable groups

We present two methods of constructing amenable (in the sense of Greenleaf) actions of nonamenable groups. In the first part of the paper, we construct a class of faithful transitive amenable actions of the free group using Schreier graphs. In the second part, we show that every finitely generated residually finite group can be embedded into a bigger residually finite group, which acts level-transitively on a locally finite rooted tree, so that the induced action on the boundary of the tree is amenable on every orbit. Bibliography: 25 titles.

[1]  Alexander Lubotzky,et al.  Cayley graphs: eigenvalues, expanders and random walks , 1995 .

[2]  A. Erschler Piecewise automatic groups , 2006 .

[3]  J. Neumann Zur allgemeinen Theorie des Masses , 1929 .

[4]  On Isoperimetric Profiles of Finitely Generated Groups , 2003 .

[5]  Пример конечно определенной аменабельной группы, не принадлежащей классу $EG$@@@An example of a finitely presented amenable group not belonging to the class $EG$ , 1998 .

[6]  Greenleaf,et al.  Invariant Means on Topological Groups , 1969 .

[7]  Vadim A. Kaimanovich,et al.  Amenability, hyperfiniteness, and isoperimetric inequalities , 1997 .

[8]  A. Erschler Boundary behavior for groups of subexponential growth , 2004 .

[9]  Tullio Ceccherini-Silberstein,et al.  Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces , 2016, 1603.04212.

[10]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[11]  R. I. Grigorchuk,et al.  Just Infinite Branch Groups , 2000 .

[12]  E. V. Douwen Measures invariant under actions of F2 , 1990 .

[13]  R. I. Grigorchuk Branch groups , 2005, math/0510294.

[14]  R. Grigorchuk Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means , 1985 .

[15]  V. Nekrashevych CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS , 2004 .

[16]  La Harpe,et al.  Topics in Geometric Group Theory , 2000 .

[17]  Laurent Bartholdi,et al.  Amenability via random walks , 2005 .

[18]  Vadim A. Kaimanovich,et al.  Random Walks on Discrete Groups: Boundary and Entropy , 1983 .