Goal-Oriented Optimal Approximations of Bayesian Linear Inverse Problems
暂无分享,去创建一个
Tiangang Cui | Luis Tenorio | Karen Willcox | Youssef M. Marzouk | Alessio Spantini | Y. Marzouk | Alessio Spantini | L. Tenorio | K. Willcox | T. Cui | A. Spantini
[1] 直樹 武川,et al. Regularization , 2019, Encyclopedia of Continuum Mechanics.
[2] Giovanni Guglielmini,et al. Elementi di trasmissione del calore , 1990 .
[3] Colin Fox,et al. Sampling Gaussian Distributions in Krylov Spaces with Conjugate Gradients , 2012, SIAM J. Sci. Comput..
[4] Edmond Chow,et al. Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions , 2014, SIAM J. Sci. Comput..
[5] Yu Yue,et al. Nonstationary Spatial Gaussian Markov Random Fields , 2010 .
[6] Karen Willcox,et al. Nonlinear Goal-Oriented Bayesian Inference: Application to Carbon Capture and Storage , 2014, SIAM J. Sci. Comput..
[7] Daniel Kressner,et al. An indefinite variant of LOBPCG for definite matrix pencils , 2014, Numerical Algorithms.
[8] Bruno Sudret,et al. Spectral likelihood expansions for Bayesian inference , 2015, J. Comput. Phys..
[9] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[10] Yingbo Hua,et al. Generalized Karhunen-Loeve transform , 1998, IEEE Signal Processing Letters.
[11] Dianne P. O'Leary,et al. Designing Optimal Spectral Filters for Inverse Problems , 2011, SIAM J. Sci. Comput..
[12] Colin Fox,et al. Convergence in Variance of Chebyshev Accelerated Gibbs Samplers , 2014, SIAM J. Sci. Comput..
[13] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[14] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[15] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[16] Patrick Heimbach,et al. A Hessian-Based Method for Uncertainty Quantification in Global Ocean State Estimation , 2014, SIAM J. Sci. Comput..
[17] E. Somersalo,et al. Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .
[18] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[19] Nicholas Ayache,et al. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..
[20] Owe Axelsson,et al. On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.
[21] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[22] Julianne Chung,et al. Computing optimal low-rank matrix approximations for image processing , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[23] Christian Jutten,et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications , 2013, Neurocomputing.
[24] Omar Ghattas,et al. Analysis of the Hessian for inverse scattering problems: II. Inverse medium scattering of acoustic waves , 2012 .
[25] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[26] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[27] Peter K. Kitanidis,et al. Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion , 2013, Numer. Linear Algebra Appl..
[28] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[29] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[30] Ivan Markovsky,et al. Structured low-rank approximation and its applications , 2008, Autom..
[31] Heikki Haario,et al. LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGS METHOD , 2009 .
[32] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[33] A. Klinvex,et al. Parallel implementations of the trace minimization scheme TraceMIN for the sparse symmetric eigenvalue problem , 2013, Comput. Math. Appl..
[34] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[35] Maher Moakher,et al. The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data , 2011, Journal of Mathematical Imaging and Vision.
[36] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[37] Bart G. van Bloemen Waanders,et al. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..
[38] Wei Li,et al. Efficient geostatistical inverse methods for structured and unstructured grids , 2006 .
[39] A. Abdel-azim. Fundamentals of Heat and Mass Transfer , 2011 .
[40] Michael A. Saunders,et al. LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..
[41] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[42] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[43] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[44] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[45] Colin Fox,et al. Posterior Exploration for Computationally Intensive Forward Models , 2011 .
[46] Ute Beyer. Mechanical Behaviour Of Materials At High Temperature , 2016 .
[47] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[48] P. Hansen. Regularization,GSVD and truncatedGSVD , 1989 .
[49] Michael A. Saunders,et al. LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..
[50] L. Pardo. Statistical Inference Based on Divergence Measures , 2005 .
[51] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[52] P. Absil,et al. A truncated-CG style method for symmetric generalized eigenvalue problems , 2006 .
[53] Pierre-Antoine Absil,et al. Adaptive Model Trust Region Methods for Generalized Eigenvalue Problems , 2005, International Conference on Computational Science.
[54] Georg Stadler,et al. Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..
[55] Gene H. Golub,et al. An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..
[56] R. Bhatia. Positive Definite Matrices , 2007 .
[57] Pierre-Antoine Absil,et al. An Implicit Riemannian Trust-Region Method for the Symmetric Generalized Eigenproblem , 2006, International Conference on Computational Science.
[58] David Higdon,et al. Adaptive Hessian-Based Nonstationary Gaussian Process Response Surface Method for Probability Density Approximation with Application to Bayesian Solution of Large-Scale Inverse Problems , 2012, SIAM J. Sci. Comput..
[59] Xavier Pennec,et al. A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.
[60] Masashi Sugiyama,et al. Geometry-aware principal component analysis for symmetric positive definite matrices , 2017, Machine Learning.
[61] W. Förstner,et al. A Metric for Covariance Matrices , 2003 .
[62] Christoph Schwab,et al. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .
[63] David E. Keyes,et al. Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.
[64] M. Saunders,et al. Towards a Generalized Singular Value Decomposition , 1981 .
[65] Julianne Chung,et al. An efficient approach for computing optimal low-rank regularized inverse matrices , 2014, ArXiv.
[66] Calyampudi R. Rao. On the distance between two populations , 1949 .
[67] N. S. Barnett,et al. Private communication , 1969 .
[68] Søren Hauberg,et al. Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations , 2010, ECCV.
[69] Alan S. Willsky,et al. A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields , 2003, Multidimens. Syst. Signal Process..
[70] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[71] Jörg Liesen,et al. Convergence analysis of Krylov subspace methods , 2004 .
[72] Karen Willcox,et al. Goal-Oriented Inference: Approach, Linear Theory, and Application to Advection Diffusion , 2012, SIAM J. Sci. Comput..
[73] P. Thomas Fletcher,et al. Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.
[74] C. Atkinson. Rao's distance measure , 1981 .
[75] Silvere Bonnabel,et al. Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..
[76] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[77] Georg Stadler,et al. Extreme-scale UQ for Bayesian inverse problems governed by PDEs , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.
[78] Anatoli Torokhti,et al. Generalized Rank-Constrained Matrix Approximations , 2007, SIAM J. Matrix Anal. Appl..
[79] A. Wood,et al. Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .
[80] Ahmed H. Sameh,et al. Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.
[81] Dianne P. O'Leary,et al. Optimal regularized low rank inverse approximation , 2015 .
[82] Omar Ghattas,et al. Analysis of the Hessian for inverse scattering problems: I. Inverse shape scattering of acoustic waves , 2012 .
[83] D. Calvetti,et al. Priorconditioners for linear systems , 2005 .
[84] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[85] J. Cullum,et al. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.
[86] Lothar Reichel,et al. Simplified GSVD computations for the solution of linear discrete ill-posed problems , 2014, J. Comput. Appl. Math..
[87] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[88] Josef Dick,et al. Higher order Quasi-Monte Carlo integration for Bayesian Estimation , 2016, 1602.07363.
[89] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[90] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[91] R. Fisher,et al. On the Mathematical Foundations of Theoretical Statistics , 1922 .
[92] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[93] C. Loan. Generalizing the Singular Value Decomposition , 1976 .
[94] L. Skovgaard. A Riemannian geometry of the multivariate normal model , 1984 .
[95] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..