Single-Event MicroKinetics: Catalyst design for complex reaction networks

Abstract Microkinetic modeling provides unprecedented insight in chemical kinetics and reaction mechanisms. In particular for reactions in complex mixtures that pertain to a limited number of reaction families, the Single-Event MicroKinetic (SEMK) methodology has been developed. Kinetic descriptors determined from dedicated model component experimentation can be employed for the full-fledged simulation of industrial feed conversion. The SEMK methodology constitutes a versatile tool for quantifying the contributions of competing reaction pathways to the overall feed conversion. Apart from kinetic descriptors, the SEMK model also comprises catalyst descriptors that allow quantifying the effect of the catalyst properties on the chemical kinetics and, hence, rational design toward novel and innovative catalysts. It is reviewed how a 10% increase in hydroisomerization yields could be achieved after having unequivocally identified the responsible elementary steps for feed losses through cracking. Moreover, 2 novel examples illustrate how, upon implementation of the SEMK model in an adequate reactor model, industrial reactor operation can be efficiently simulated and the rate-determining phenomena in the overall feed conversion can be determined.

[1]  Guy Marin,et al.  A Single-Event MicroKinetic model for “ethylbenzene dealkylation/xylene isomerization” on Pt/H-ZSM-5 zeolite catalyst , 2012 .

[2]  D. M. Bishop,et al.  Symmetry Numbers and Statistical Factors in Rate Theory , 1965 .

[3]  P. Galtier,et al.  Simulation of an industrial riser for catalytic cracking in the presence of coking using Single-Event MicroKinetics , 2010 .

[4]  G. Froment,et al.  Single-Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite , 1995 .

[5]  Gilbert F. Froment,et al.  Single-event kinetics of catalytic cracking , 1993 .

[6]  G. Marin,et al.  Influence of coke formation on the conversion of hydrocarbons I. Alkanes on a USY-zeolite. , 2000 .

[7]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[8]  G. Marin,et al.  Kinetics for hydrocracking based on structural classes: Model development and application , 2001 .

[9]  P. Galtier,et al.  From single events theory to molecular kinetics—application to industrial process modelling , 2003 .

[10]  R. S. Jones,et al.  Kinetic and thermodynamic lumping of multicomponent mixtures : Gianni Astarita and Stanley I. Sandler (Editors), Elsevier, Amsterdam, 1991, 358 pp. Price Dfl. 295.00. ISBN-444-89032-7 , 1993 .

[11]  P. Galtier,et al.  A single events kinetic model: n-butane isomerization , 2004 .

[12]  P. Jacobs,et al.  A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites , 2000 .

[13]  Linda J. Broadbelt,et al.  Computer generated reaction networks: on-the-fly calculation of species properties using computational quantum chemistry , 1994 .

[14]  Gilbert F. Froment,et al.  Kinetic Modeling and Reactor Simulation in Hydrodesulfurization of Oil Fractions , 1994 .

[15]  Guy Marin,et al.  Eurokin. Chemical Reaction Kinetics in Practice , 2001 .

[16]  Venkat Venkatasubramanian,et al.  An Intelligent System for Reaction Kinetic Modeling and Catalyst Design , 2004 .

[17]  G. Marin,et al.  Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling , 2012 .

[18]  Gilbert F. Froment,et al.  Fundamental Kinetic Modeling of Catalytic Reforming , 2009 .

[19]  E. Gaigneaux,et al.  Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods. , 2007, Chemistry.

[20]  P. Jacobs,et al.  Design of Optimum Zeolite Pore System for Central Hydrocracking of Long-Chain n-Alkanes based on a Single-Event Microkinetic Model , 2009 .

[21]  Estefania Argente,et al.  Can artificial neural networks help the experimentation in catalysis , 2003 .

[22]  Radislav A. Potyrailo,et al.  Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials , 2006 .

[23]  P. Raybaud,et al.  Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors , 2003 .

[24]  G. Froment,et al.  Single Event Kinetic Modeling of Complex Catalytic Processes , 2005 .

[25]  G. Marin,et al.  Hydrogenation kinetics of toluene on Pt/ZSM-22 , 2002 .

[26]  G. Marin,et al.  Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics Hydrogenation on a Pt Catalyst , 2012 .

[27]  Claude Mirodatos,et al.  Combinatorial Approaches to Heterogeneous Catalysis: Strategies and Perspectives for Academic Research , 2001 .

[28]  Venkat Venkatasubramanian,et al.  Microkinetic modeling of propane aromatization over HZSM-5 , 2005 .

[29]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 1. Model Formulation , 2001 .

[30]  Pravesh Kumar,et al.  Single-Event Microkinetics for Methanol to Olefins on H-ZSM-5 , 2013 .

[31]  Guy Marin,et al.  Single-Event MicroKinetics of Aromatics Hydrogenation on Pt/H-ZSM22 , 2011 .

[32]  Gilbert F. Froment,et al.  Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts , 1985 .

[33]  P. Jacobs,et al.  Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite , 2004 .

[34]  P. Jacobs,et al.  A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites. , 2006, The journal of physical chemistry. B.

[35]  Guy Marin,et al.  Kinetics of chemical reactions: decoding complexity , 2011 .

[36]  Dale F. Rudd,et al.  The Microkinetics of heterogeneous catalysis , 1993 .

[37]  Gilbert F. Froment,et al.  Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization , 1989 .

[38]  P. Jacobs,et al.  Isomerization of Long-Chain N-Alkanes on Pt/H-ZSM-22 and Pt/H-Y Zeolite Catalysts and on their Intimate Mixtures , 1992 .

[39]  P. Beato,et al.  Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23 , 2013 .

[40]  G. Marin,et al.  Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites , 2001 .

[41]  Guy Marin,et al.  Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons , 2001 .

[42]  G. Marin,et al.  Bridging the gap between liquid and vapor phase hydrocracking , 2006 .

[43]  Gilbert F. Froment,et al.  Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling , 2006 .

[44]  Gilbert F. Froment,et al.  Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals , 1995 .

[45]  P. Jacobs,et al.  Evidences for pore mouth and key–lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites , 2001 .

[46]  Guy Marin,et al.  Single-Event Microkinetic Model for Fischer−Tropsch Synthesis on Iron-Based Catalysts , 2008 .

[47]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 2. Experimental Results, Model Discrimination, and Parameter Estimation , 2001 .

[48]  George M. Bollas,et al.  Five-lump kinetic model with selective catalyst deactivation for the prediction of the product selectivity in the fluid catalytic cracking process , 2007 .

[49]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[50]  P. Jacobs,et al.  Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22 , 2003 .

[51]  G. Marin,et al.  Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis , 2011 .

[52]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[53]  G. Froment,et al.  Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins , 1984 .

[54]  Gabriele Centi,et al.  Catalysis for Renewables , 2007 .

[55]  Guy Marin,et al.  Alkene Protonation Enthalpy Determination from Fundamental Kinetic Modeling of Alkane Hydroconversion on Pt/H–(US)Y-Zeolite , 2001 .

[56]  Prodromos Daoutidis,et al.  Language-oriented rule-based reaction network generation and analysis: Description of RING , 2012, Comput. Chem. Eng..

[57]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[58]  W. Maier,et al.  Combinatorial and high-throughput materials science. , 2007, Angewandte Chemie.

[59]  Warren E. Stewart,et al.  Computer-Aided Modeling of Reactive Systems , 2008 .

[60]  Jens Scheidtmann,et al.  Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology , 2001 .