Placement and orientation of individual DNA shapes on lithographically patterned surfaces.

[1]  C. Rovira,et al.  Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography , 2008, Nanotechnology.

[2]  R. Boukherroub,et al.  Different strategies for functionalization of diamond surfaces , 2008 .

[3]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[4]  Li Zhang,et al.  Assessment of chemically separated carbon nanotubes for nanoelectronics. , 2008, Journal of the American Chemical Society.

[5]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[6]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[7]  Heinz Schmid,et al.  Controlled particle placement through convective and capillary assembly. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[8]  Andreas Stemmer,et al.  Local surface charges direct the deposition of carbon nanotubes and fullerenes into nanoscale patterns. , 2007, Nano letters.

[9]  Thomas H. LaBean,et al.  Constructing novel materials with DNA , 2007 .

[10]  Marya Lieberman,et al.  Deposition of DNA rafts on cationic SAMs on silicon [100]. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Lyklema Overcharging, charge reversal: chemistry or physics? , 2006 .

[12]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[13]  Pei-Yin Chi,et al.  Generation of nano-scaled DNA patterns through electro-beam induced charge trapping , 2006 .

[14]  E. Le Cam,et al.  Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  Influence of the structure of boundary layers and the nature of counterions on the position of the isoelectric point of silica surfaces , 2006 .

[16]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[17]  K. Besteman,et al.  Charge inversion at high ionic strength studied by streaming currents. , 2006, Physical review letters.

[18]  Eugeniu Balaur,et al.  Direct immobilization of DNA on diamond-like carbon nanodots , 2006 .

[19]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[20]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[22]  M. Taniguchi,et al.  Selective Adsorption of DNA onto SiO2 Surface in SiO2/SiH Pattern , 2004 .

[23]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .

[24]  A. Ferrari,et al.  Diamond-like carbon for magnetic storage disks , 2004 .

[25]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[26]  Boris I Shklovskii,et al.  Colloquium: The physics of charge inversion in chemical and biological systems , 2002 .

[27]  X. Zhang Electrochemistry of silicon and its oxide , 2001 .

[28]  P. Mertens,et al.  Adsorption of Metal Ions onto Hydrophilic Silicon Surfaces from Aqueous Solution: Effect of pH , 1998 .

[29]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[30]  B. Druz,et al.  Ion beam deposition of diamond-like carbon from an r.f. inductively coupled CH4-plasma source , 1996 .

[31]  W. Moreau Semiconductor Lithography: Principles, Practices, and Materials , 1987 .

[32]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.