Performance of Circular Yagi-Uda Arrays for Beamforming Applications Using Particle Swarm Optimization Algorithm

In this paper, a circular Yagi-Uda array (CYUA) for smart antenna applications is designed using the lengths and spacings from the optimum design of a three-element linear Yagi-Uda antenna. Then a modified circular Yagi-Uda array (MCYUA) is developed by adding 5 circular connecting wires to the inner parasitic elements (reflectors) to form a wire grid cylinder. The results are compared with those for uniform circular array (UCA) with 12 half-wave dipole elements. In our analysis, the method of moments (MoM) is used to compute the response of the arrays in a mutual coupling environment. The particle swarm optimization (PSO) algorithm is used to optimize the complex excitations of the adaptive arrays elements for beamforming.

[1]  Gholamreza Dadashzadeh,et al.  A Comprehensive Performance Study of Circular and Hexagonal Array Geometreis in the LMS Algorithem for Smart Antenna Applications , 2007 .

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  Q.-Z. Liu,et al.  A Novel Circular Smart Antenna Array Implementation and its Analysis with Mutual Coupling , 2004 .

[4]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[5]  P. Ioannides,et al.  Uniform circular and rectangular arrays for adaptive beamforming applications , 2005, IEEE Antennas and Wireless Propagation Letters.

[6]  S.M.M. Ibrahem,et al.  Design of yagi-uda antenna and electromagnetically coupled curl antenna using particle swarm optimization algorithm , 2005, Proceedings of the Twenty-Second National Radio Science Conference, 2005. NRSC 2005..

[7]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[8]  Kalyan Veeramachaneni,et al.  Optimization Using Particle Swarms with Near Neighbor Interactions , 2003, GECCO.

[9]  Korany R. Mahmoud,et al.  A Comparison Between Circular and Hexagonal Array Geometries for Smart Antenna Systems Using Particle Swarm Optimization Algorithm , 2007 .

[10]  A. Massa,et al.  PSO-Based Real-Time Control of Planar Uniform Circular Arrays , 2006, IEEE Antennas and Wireless Propagation Letters.

[11]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  P. Ioannides,et al.  Uniform circular arrays for smart antennas , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[13]  Ahmed A. Kishk,et al.  Physical Theory for Particle Swarm Optimization , 2007 .

[14]  G. Thiele,et al.  Antenna theory and design , 1981 .

[16]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[17]  C. Christodoulou,et al.  Potentials of smart antennas in CDMA systems and uplink improvements , 2001 .

[18]  Moctar Mouhamadou,et al.  SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL , 2006 .

[19]  Yong-Chang Jiao,et al.  Synthesis of Circular Antenna Array Using Crossed Particle Swarm Optimization Algorithm , 2006 .

[20]  H. Scott,et al.  360/spl deg/ electronically controlled beam scan array , 2004, IEEE Transactions on Antennas and Propagation.

[21]  H. Scott,et al.  360 Electronically Controlled Beam Scan Array , 2004 .