Wiener processes with random effects for degradation data

This article studies the maximum likelihood inference on a class of Wiener processes with random effects for degradation data. Degradation data are special case of functional data with monotone trend. The setting for degradation data is one on which n independent subjects, each with a Wiener process with random drift and diffusion parameters, are observed at possible different times. Unit-to-unit variability is incorporated into the model by these random effects. EM algorithm is used to obtain the maximum likelihood estimators of the unknown parameters. Asymptotic properties such as consistency and convergence rate are established. Bootstrap method is used for assessing the uncertainties of the estimators. Simulations are used to validate the method. The model is fitted to bridge beam data and corresponding goodness-of-fit tests are carried out. Failure time distributions in terms of degradation level passages are calculated and illustrated.

[1]  Raj S. Chhikara,et al.  The Inverse Gaussian Distribution , 1990 .

[2]  Ashok Saxena,et al.  Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data , 1978 .

[3]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[4]  Jon A. Wellner,et al.  Two estimators of the mean of a counting process with panel count data , 2000 .

[5]  G A Whitmore,et al.  Modelling Accelerated Degradation Data Using Wiener Diffusion With A Time Scale Transformation , 1997, Lifetime data analysis.

[6]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[7]  A. Basu,et al.  The Inverse Gaussian Distribution , 1993 .

[8]  K. A. Doksum,et al.  Degradation rate models for failure time and survival data , 1991 .

[9]  Xiao Wang,et al.  Physical Degradation Models , 2008 .

[10]  C. Joseph Lu,et al.  Using Degradation Measures to Estimate a Time-to-Failure Distribution , 1993 .

[11]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[12]  Jon A. Wellner,et al.  TWO LIKELIHOOD-BASED SEMIPARAMETRIC ESTIMATION METHODS FOR PANEL COUNT DATA WITH COVARIATES , 2005, math/0509132.

[13]  Nozer D. Singpurwalla,et al.  Survival in Dynamic Environments , 1995 .

[14]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[15]  G A Whitmore,et al.  Estimating degradation by a wiener diffusion process subject to measurement error , 1995, Lifetime data analysis.

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  M. Nikulin,et al.  Estimation in Degradation Models with Explanatory Variables , 2001, Lifetime data analysis.

[18]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[19]  B. Efron Nonparametric standard errors and confidence intervals , 1981 .

[20]  R. Little Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .

[21]  K. Doksum,et al.  Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution , 1992 .

[22]  Xiaovidferroni bo Wang Nonparametric inference with applications to dark matter estimation in astronomy and degradation modeling in reliability , 2005 .

[23]  T. Fearn The Jackknife , 2000 .

[24]  Chuanhai Liu ML Estimation of the MultivariatetDistribution and the EM Algorithm , 1997 .

[25]  A. V. D. Vaart,et al.  Lectures on probability theory and statistics , 2002 .

[26]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[27]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[28]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution: Theory: Methodology, and Applications , 1988 .

[29]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[30]  Elsayed A. Elsayed,et al.  A Geometric Brownian Motion Model for Field Degradation Data , 2004 .

[31]  M. Crowder,et al.  Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure , 2004, Lifetime data analysis.

[32]  Ron S. Kenett,et al.  Encyclopedia of statistics in quality and reliability , 2007 .

[33]  U. Dafni,et al.  Modeling the Progression of HIV Infection , 1991 .

[34]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution , 1989 .

[35]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .