Wiener processes with random effects for degradation data
暂无分享,去创建一个
[1] Raj S. Chhikara,et al. The Inverse Gaussian Distribution , 1990 .
[2] Ashok Saxena,et al. Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data , 1978 .
[3] W. Nelson. Statistical Methods for Reliability Data , 1998 .
[4] Jon A. Wellner,et al. Two estimators of the mean of a counting process with panel count data , 2000 .
[5] G A Whitmore,et al. Modelling Accelerated Degradation Data Using Wiener Diffusion With A Time Scale Transformation , 1997, Lifetime data analysis.
[6] K. Chaloner,et al. Bayesian Experimental Design: A Review , 1995 .
[7] A. Basu,et al. The Inverse Gaussian Distribution , 1993 .
[8] K. A. Doksum,et al. Degradation rate models for failure time and survival data , 1991 .
[9] Xiao Wang,et al. Physical Degradation Models , 2008 .
[10] C. Joseph Lu,et al. Using Degradation Measures to Estimate a Time-to-Failure Distribution , 1993 .
[11] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[12] Jon A. Wellner,et al. TWO LIKELIHOOD-BASED SEMIPARAMETRIC ESTIMATION METHODS FOR PANEL COUNT DATA WITH COVARIATES , 2005, math/0509132.
[13] Nozer D. Singpurwalla,et al. Survival in Dynamic Environments , 1995 .
[14] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[15] G A Whitmore,et al. Estimating degradation by a wiener diffusion process subject to measurement error , 1995, Lifetime data analysis.
[16] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[17] M. Nikulin,et al. Estimation in Degradation Models with Explanatory Variables , 2001, Lifetime data analysis.
[18] J. Bert Keats,et al. Statistical Methods for Reliability Data , 1999 .
[19] B. Efron. Nonparametric standard errors and confidence intervals , 1981 .
[20] R. Little. Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .
[21] K. Doksum,et al. Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution , 1992 .
[22] Xiaovidferroni bo Wang. Nonparametric inference with applications to dark matter estimation in astronomy and degradation modeling in reliability , 2005 .
[23] T. Fearn. The Jackknife , 2000 .
[24] Chuanhai Liu. ML Estimation of the MultivariatetDistribution and the EM Algorithm , 1997 .
[25] A. V. D. Vaart,et al. Lectures on probability theory and statistics , 2002 .
[26] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[27] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[28] J. Leroy Folks,et al. The Inverse Gaussian Distribution: Theory: Methodology, and Applications , 1988 .
[29] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[30] Elsayed A. Elsayed,et al. A Geometric Brownian Motion Model for Field Degradation Data , 2004 .
[31] M. Crowder,et al. Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure , 2004, Lifetime data analysis.
[32] Ron S. Kenett,et al. Encyclopedia of statistics in quality and reliability , 2007 .
[33] U. Dafni,et al. Modeling the Progression of HIV Infection , 1991 .
[34] J. Leroy Folks,et al. The Inverse Gaussian Distribution , 1989 .
[35] B. Jørgensen. Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .