A neural network-based scheme coupled with the RPV model inversion package
暂无分享,去创建一个
Thomas Lavergne | Peng Gong | Fernando Sedano | Luis Maria Ibaňez | P. Gong | T. Lavergne | F. Sedano | L. M. Ibaňez
[1] Nadine Gobron,et al. Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..
[2] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[3] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[4] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[5] Mohammad Bagher Menhaj,et al. Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.
[6] Gareth Roberts,et al. Vegetation structure characteristics and relationships of Kalahari woodlands and savannas , 2004 .
[7] Ranga B. Myneni,et al. Time‐series validation of MODIS land biophysical products in a Kalahari woodland, Africa , 2005 .
[8] F. Baret,et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .
[9] H. Rahman,et al. Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .
[10] W. Lucht,et al. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations , 2000 .
[11] E. Satterfield,et al. Cover: Southern Africa, 2 February 2002 to 16 May 2002, Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m land surface reflectance , 2005 .
[12] S. Ustin,et al. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA , 2008 .
[13] O. Hagolle,et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .
[14] Thomas Kaminski,et al. Recipes for adjoint code construction , 1998, TOMS.
[15] Peng Gong,et al. Land cover assessment with MODIS imagery in southern African Miombo ecosystems , 2005 .
[16] Peng Gong,et al. Inverting a canopy reflectance model using a neural network , 1999 .
[17] Nadine Gobron,et al. A new inversion scheme for the RPV model , 2002 .
[18] Michael T. Manry,et al. Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .
[19] A. Strahler,et al. Forward and inverse modelling of canopy directional reflectance using a neural network , 1998 .
[20] A. Strahler,et al. A review of reflectance nomenclature used in remote sensing , 2000 .
[21] F. Baret,et al. Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data , 2002 .
[22] Nadine Gobron,et al. Characterization of surface heterogeneity detected at the MISR/TERRA subpixel scale , 2001 .
[23] R. Giering,et al. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes , 2007 .
[24] Gregory P. Asner,et al. Ecological Research Needs from Multiangle Remote Sensing Data , 1998 .
[25] S. Liang. Quantitative Remote Sensing of Land Surfaces , 2003 .
[26] D. Diner,et al. MISR: A multiangle imaging spectroradiometer for geophysical and climatological research from Eos , 1989 .
[27] A. Tarantola. Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .
[28] Peng Gong,et al. Inverting a canopy reflectance model using an artificial neural network , 1995, Remote Sensing.
[29] Daniel Gómez,et al. Tree density estimation in a tropical woodland ecosystem with multiangular MISR and MODIS data , 2008 .