PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF INTENSELY STAR-FORMING GALAXIES AT REDSHIFT∼2

We analyze the physical conditions in the interstellar gas of 11 actively star-forming galaxies at z∼2, based on integral-field spectroscopy from the ESO-VLT and Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer imaging. We concentrate on the high Hα surface brightnesses, large line widths, line ratios, and the clumpy nature of these galaxies. We show that photoionization calculations and emission line diagnostics imply gas pressures and densities that are similar to the most intense nearby star-forming regions at z = 0 but over much larger scales (10–20 kpc). A relationship between surface brightness and velocity dispersion can be explained through simple energy injection arguments and a scaling set by nearby galaxies with no free parameters. The high velocity dispersions are a natural consequence of intense star formation thus regions of high velocity dispersion are not evidence for mass concentrations such as bulges or rings. External mechanisms such as cosmological gas accretion generally do not have enough energy to sustain the high velocity dispersions. In some cases, the high pressures and low gas metallicites may make it difficult to robustly distinguish between active galactic nucleus ionization cones and star formation, as we show for BzK−15504 at z = 2.38. We construct a picture where the early stages of galaxy evolution are driven by self-gravity which powers strong turbulence until the velocity dispersion is high. Then massive, dense, gas-rich clumps collapse, triggering star formation with high efficiencies and intensities as observed. At this stage, the intense star formation is likely self-regulated by the mechanical energy output of massive stars.

[1]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[2]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[3]  R. Teyssier,et al.  Large-scale galactic turbulence: can self-gravity drive the observed H i velocity dispersions? , 2008, 0810.1741.

[4]  C. Breuck,et al.  Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era” , 2008, 0809.5171.

[5]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[6]  B. Robertson,et al.  High-Redshift Galaxy Kinematics: Constraints on Models of Disk Formation , 2008, 0808.1100.

[7]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[8]  Laboratoire AIM,et al.  Bulge Formation by the Coalescence of Giant Clumps in Primordial Disk Galaxies , 2008, 0903.1937.

[9]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[10]  H. F. Astrophysics,et al.  Dynamical properties of a large young disk galaxy at z = 2.03 , 2008, 0806.3369.

[11]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[12]  D. Elbaz,et al.  Observations and modeling of a clumpy galaxy at z = 1.6 - Spectroscopic clues to the origin and evolution of chain galaxies , 2008, 0803.3831.

[13]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[14]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[15]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[16]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[17]  M. Lehnert,et al.  Integral-field spectroscopy of a Lyman-break galaxy at z = 3.2: evidence for merging , 2007, 0711.1491.

[18]  E. Tasker,et al.  The Effect of the Interstellar Model on Star Formation Properties in Galactic Disks , 2007, 0709.1972.

[19]  D. Calzetti,et al.  Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law , 2007, 0708.0922.

[20]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[21]  James E. Larkin,et al.  Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.

[22]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[23]  A. Cimatti,et al.  Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation , 2007, 0706.2656.

[24]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[25]  S. Ravindranath,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007, astro-ph/0701121.

[26]  M. McElwain,et al.  Integral Field Spectroscopy of a Candidate Disk Galaxy at z ~ 1.5 Using Laser Guide Star Adaptive Optics , 2006, astro-ph/0612199.

[27]  R. Bender,et al.  Intense Star Formation and Feedback at High Redshift: Spatially Resolved Properties of the z = 2.6 Submillimeter Galaxy SMM J14011+0252 , 2006, astro-ph/0611769.

[28]  R. Abuter,et al.  Extreme Gas Kinematics in the z = 2.2 Powerful Radio Galaxy MRC 1138–262: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe? , 2006 .

[29]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[30]  I. Smail,et al.  Rest-Frame Optical Spectroscopic Classifications for Submillimeter Galaxies , 2006, astro-ph/0607580.

[31]  B. Elmegreen,et al.  Observations of Thick Disks in the Hubble Space Telescope Ultra Deep Field , 2006, astro-ph/0607540.

[32]  Garching,et al.  Emission-line diagnostics of low-metallicity active galactic nuclei , 2006, astro-ph/0607311.

[33]  R. Bender,et al.  Lyman Break Galaxies under a Microscope: The Small-Scale Dynamics and Mass of an Arc in the Cluster 1E 0657–56 , 2006, astro-ph/0606527.

[34]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[35]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[36]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[37]  E. Tasker,et al.  Simulating Star Formation and Feedback in Galactic Disk Models , 2005, astro-ph/0512027.

[38]  R. Koopmann,et al.  An Atlas of Hα and R Images and Radial Profiles of 29 Bright Isolated Spiral Galaxies , 2005, astro-ph/0511665.

[39]  R. Klein,et al.  On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence , 2005, astro-ph/0511016.

[40]  B. Catinella,et al.  A Comparison of Hα and Stellar Scale Lengths in Virgo and Field Spirals , 2005, astro-ph/0510374.

[41]  L. Colina,et al.  LINER-like Extended Nebulae in ULIRGs: Shocks Generated by Merger-Induced Flows , 2005, astro-ph/0509681.

[42]  T. Heckman,et al.  The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds , 2005, astro-ph/0506645.

[43]  Munich,et al.  The Supernova Rate-Velocity Dispersion Relation in the Interstellar Medium , 2005, astro-ph/0506339.

[44]  B. Elmegreen,et al.  Stellar Populations in 10 Clump-Cluster Galaxies of the Hubble Ultra Deep Field , 2005, astro-ph/0504032.

[45]  M. Franx,et al.  Gemini Near-Infrared Spectrograph Observations of a Red Star-forming Galaxy at z = 2.225: Evidence of Shock Ionization Due to a Galactic Wind , 2005, astro-ph/0502082.

[46]  R. Koopmann,et al.  Hα Morphologies and Environmental Effects in Virgo Cluster Spiral Galaxies , 2004 .

[47]  O. Shemmer,et al.  Near-Infrared Spectroscopy of High-Redshift Active Galactic Nuclei. II. Disappearing Narrow-Line Regions and the Role of Accretion , 2004, astro-ph/0406560.

[48]  J. Brinchmann,et al.  Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective , 2004, astro-ph/0406218.

[49]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[50]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[51]  S. Veilleux,et al.  A Search for Very Extended Ionized Gas in Nearby Starburst and Active Galaxies , 2003, astro-ph/0308330.

[52]  Ct,et al.  A Turbulent Origin for Flocculent Spiral Structure in Galaxies. II. Observations and Models of M33 , 2003, astro-ph/0305050.

[53]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[54]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[55]  F. Walter,et al.  Molecular Gas in M82: Resolving the Outflow and Streamers , 2002, astro-ph/0210602.

[56]  R. Koopmann,et al.  Massive Star Formation Rates and Radial Distributions from Hα Imaging of 84 Virgo Cluster and Isolated Spiral Galaxies , 2002, astro-ph/0209547.

[57]  C. Norman,et al.  Gravity-driven Turbulence in Galactic Disks , 2002, astro-ph/0207641.

[58]  Beverley J. Wills,et al.  Size and Structure of the Narrow-Line Region of Quasars , 2002, astro-ph/0206334.

[59]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[60]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[61]  R. Koopmann,et al.  An Atlas of Hα and R Images and Radial Profiles of 63 Bright Virgo Cluster Spiral Galaxies , 2001, astro-ph/0106335.

[62]  J. Silk The formation of galaxy discs , 2000, astro-ph/0010624.

[63]  C. McKee,et al.  Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.

[64]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[65]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[66]  J. Tan Star Formation Rates in Disk Galaxies and Circumnuclear Starbursts from Cloud Collisions , 1999, astro-ph/9906355.

[67]  T. Heckman,et al.  Very Extended X-Ray and Hα Emission in M82: Implications for the Superwind Phenomenon , 1999, astro-ph/9904227.

[68]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[69]  T. Heckman,et al.  On the Structure and Morphology of the “Diffuse Ionized Medium” in Star-forming Galaxies , 1998, astro-ph/9811100.

[70]  M. M. Low The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[71]  T. Heckman,et al.  Toward a Unified Model for the “Diffuse Ionized Medium” in Normal and Starburst Galaxies , 1998, astro-ph/9807323.

[72]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[73]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[74]  M. Noguchi Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[75]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[76]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[77]  T. Heckman,et al.  The Nature of Starburst Galaxies , 1996 .

[78]  L. Allen,et al.  The global rate and efficiency of star formation in spiral galaxies as a function of morphology and environment , 1996 .

[79]  C. Nelson,et al.  Stellar and Gaseous Kinematics of Seyfert Galaxies. II. The Role of the Bulge , 1996 .

[80]  T. Heckman,et al.  Ionized gas in the halos of edge-on starburst galaxies: Evidence for supernova-driven superwinds , 1996 .

[81]  T. Heckman,et al.  Ionized Gas in the Halos of Edge-on, Starburst Galaxies: Data and Results , 1995 .

[82]  M. Dopita,et al.  On the Law of Star Formation in Disk Galaxies , 1994 .

[83]  J. Silk,et al.  Gravitational Instability and Disk Star Formation , 1994 .

[84]  Ian N. Evans,et al.  Hubble Space Telescope Imaging of the Narrow-Line Region of NGC 4151 , 1993 .

[85]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[86]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[87]  T. Heckman,et al.  Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source , 1989 .

[88]  T. Heckman,et al.  Emission-line Nebulae of Powerful Far-infrared Galaxies , 1989 .

[89]  P. Solomon,et al.  Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies , 1988 .

[90]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[91]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[92]  R. Tolman ON THE ESTIMATION OF DISTANCES IN A CURVED UNIVERSE WITH A NON-STATIC LINE ELEMENT. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 THE STELLAR, GAS AND DYNAMICAL MASSES OF STAR-FORMING GALAXIES AT Z ∼ 2 1 , 2006 .

[94]  C. Steidel,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 Hα OBSERVATIONS OF A LARGE SAMPLE OF GALAXIES AT z ∼ 2: IMPLICATIONS FOR STAR FORMATION IN HIGH REDSHIFT GALAXIES 1 , 2006 .

[95]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/03 THE KINEMATICS OF MORPHOLOGICALLY SELECTED Z ∼ 2 GALAXIES IN THE GOODS-NORTH FIELD 1 , 2004 .

[96]  Yong-Seo Park,et al.  ApJ, in press , 1999 .

[97]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .

[98]  R. Brissenden,et al.  Astronomical Data Analysis Software and Systems II , 1993 .

[99]  R. Larson The Initial Mass Function , 1988 .

[100]  Michel Fich,et al.  Galactic and extragalactic star formation , 1988 .

[101]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[102]  S. A. Cain,et al.  Proceedings of the NATIONAL ACADEMY OF SCIENCES THE BIOLOGICAL BASIS OF PRODUCTIVITY' AND HUMAN WELFARE , 2022 .