Proposal of realizing superadiabatic geometric quantum computation in decoherence-free subspaces

We propose a practical scheme to implement universal superadiabatic geometric quantum gates in decoherence-free subspaces in the trapped-ions system. The logical qubit is only encoded by two neighboring physical qubits, which is the minimal resource for the decoherence-free subspace encoding. Different from the nonadiabatic control in decoherence-free subspace (Liang et al. in Phys Rev A 89:062312, 2014), a new Hamiltonian to implement universal effective interaction between logical qubits is proposed in the scheme. The proposed gates are numerically demonstrated to be robust against both systematic errors and collective dephasing noises, which combine the advantages of superadiabatic geometric quantum control and decoherence-free subspace. Since the Hamiltonian we use relies solely on two-body interactions, our scheme would be promising to be realized experimentally in trapped-ions systems.

[1]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[2]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[3]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[4]  Franco Nori,et al.  Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts , 2016, 1603.08061.

[5]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[6]  Kihwan Kim,et al.  Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space , 2016, Nature Communications.

[7]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[8]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[9]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[10]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[11]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[12]  F. Schmidt-Kaler,et al.  Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. , 2002, Physical review letters.

[13]  Dieter Suter,et al.  Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.

[14]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[15]  Paolo Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999 .

[16]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[17]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[18]  Quantum computation in a decoherence-free subspace with superconducting devices , 2008, 0806.0753.

[19]  Xue-ke Song,et al.  Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.

[20]  Shi-Liang Zhu,et al.  Erratum: Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases [Phys. Rev. Lett.PRLTAO0031-900789, 097902 (2002)] , 2002 .

[21]  Adolfo del Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[22]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[23]  D. M. Tong,et al.  Fast non-Abelian geometric gates via transitionless quantum driving , 2014, Scientific Reports.

[24]  Jiannis K. Pachos,et al.  Erratum: Decoherence-free dynamical and geometrical entangling phase gates [Phys. Rev. A 69, 033817 (2004)] , 2005 .

[25]  W Xiang-Bin,et al.  Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.

[26]  H. Riemann,et al.  Geometric phase gates with adiabatic control in electron spin resonance , 2012, 1208.0555.

[27]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[28]  Z. Xue,et al.  Nonadiabatic holonomic quantum computation with all-resonant control , 2016, 1601.07219.

[29]  Z. D. Wang,et al.  Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions , 2006 .

[30]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[31]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[32]  L. Aolita,et al.  Geometric phase gate on an optical transition for ion trap quantum computation , 2007, 0710.3950.

[33]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[34]  Hui Yan,et al.  Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers , 2016, 1604.07914.

[35]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[36]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[37]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[39]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[40]  Shi-Liang Zhu,et al.  Unconventional geometric quantum computation. , 2003, Physical Review Letters.

[41]  Shi-Liang Zhu,et al.  Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. , 2005, Physical review letters.

[42]  N. Zanghí,et al.  On the stability of quantum holonomic gates , 2012, 1209.1693.

[43]  F. J. Heremans,et al.  Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system , 2016, Nature Physics.

[44]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[45]  M. Feng,et al.  Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator , 2012 .

[46]  F. Joseph Heremans,et al.  Optical manipulation of the Berry phase in a solid-state spin qubit , 2016 .

[47]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[48]  Vahid Azimi Mousolou,et al.  Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.

[49]  E Knill,et al.  Preparation of Entangled States through Hilbert Space Engineering. , 2016, Physical review letters.

[50]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[51]  Erik Sjöqvist,et al.  Geometric phases in quantum information , 2015 .

[52]  Shi-Liang Zhu,et al.  Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems , 2002, quant-ph/0210027.

[53]  T. Monz,et al.  Realization of universal ion-trap quantum computation with decoherence-free qubits. , 2009, Physical review letters.

[54]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[55]  Li-Xiang Cen,et al.  Scalable quantum computation in decoherence-free subspaces with trapped ions , 2006, quant-ph/0603222.

[56]  Xi Chen,et al.  Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms , 2016, Nature Communications.

[57]  Hui Yan,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .

[58]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[59]  Dieter Suter,et al.  Colloquium : Protecting quantum information against environmental noise , 2016 .

[60]  Hui Sun,et al.  Geometric entangling gates in decoherence-free subspaces with minimal requirements. , 2009, Physical review letters.

[61]  Jiannis K. Pachos,et al.  Decoherence-free dynamical and geometrical entangling phase gates (9 pages) , 2004 .

[62]  Erik Sjöqvist,et al.  A new phase in quantum computation , 2008 .

[63]  Gabriele De Chiara,et al.  Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.

[64]  S. Berger,et al.  Exploring the effect of noise on the Berry phase , 2013, 1302.3305.

[65]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[66]  Nonadiabatic geometric quantum computation using a single-loop scenario (4 pages) , 2005, quant-ph/0502090.