Proposal of realizing superadiabatic geometric quantum computation in decoherence-free subspaces
暂无分享,去创建一个
Hui Yan | Wei Huang | Jia-Zhen Li | Yan-Xiong Du | Qing-Xian Lv | Zhen-Tao Liang | Wei Huang | Hui Yan | Zhen-Tao Liang | Qing-Xian Lv | Jia-Zhen Li | Yan-Xiong Du
[1] M. Berry,et al. Transitionless quantum driving , 2009 .
[2] D. M. Tong,et al. Non-adiabatic holonomic quantum computation , 2011, 1107.5127.
[3] S. Berger,et al. Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.
[4] Franco Nori,et al. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts , 2016, 1603.08061.
[5] Guilu Long,et al. Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.
[6] Kihwan Kim,et al. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space , 2016, Nature Communications.
[7] Shi-Liang Zhu,et al. Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.
[8] Erik Sjöqvist,et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.
[9] Stefan W. Hell,et al. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.
[10] Barry C Sanders,et al. High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.
[11] C. Zu,et al. Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.
[12] F. Schmidt-Kaler,et al. Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. , 2002, Physical review letters.
[13] Dieter Suter,et al. Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.
[14] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[15] Paolo Zanardi,et al. Non-Abelian Berry connections for quantum computation , 1999 .
[16] Shi-Liang Zhu,et al. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .
[17] T. R. Tan,et al. High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.
[18] Quantum computation in a decoherence-free subspace with superconducting devices , 2008, 0806.0753.
[19] Xue-ke Song,et al. Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.
[20] Shi-Liang Zhu,et al. Erratum: Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases [Phys. Rev. Lett.PRLTAO0031-900789, 097902 (2002)] , 2002 .
[21] Adolfo del Campo,et al. Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.
[22] D A Lidar,et al. Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.
[23] D. M. Tong,et al. Fast non-Abelian geometric gates via transitionless quantum driving , 2014, Scientific Reports.
[24] Jiannis K. Pachos,et al. Erratum: Decoherence-free dynamical and geometrical entangling phase gates [Phys. Rev. A 69, 033817 (2004)] , 2005 .
[25] W Xiang-Bin,et al. Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.
[26] H. Riemann,et al. Geometric phase gates with adiabatic control in electron spin resonance , 2012, 1208.0555.
[27] J I Cirac,et al. Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.
[28] Z. Xue,et al. Nonadiabatic holonomic quantum computation with all-resonant control , 2016, 1601.07219.
[29] Z. D. Wang,et al. Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions , 2006 .
[30] Shi-Liang Zhu,et al. Geometric quantum gates that are robust against stochastic control errors , 2005 .
[31] Paolo Zanardi,et al. Holonomic quantum computation , 1999 .
[32] L. Aolita,et al. Geometric phase gate on an optical transition for ion trap quantum computation , 2007, 0710.3950.
[33] Z. D. Wang,et al. Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .
[34] Hui Yan,et al. Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers , 2016, 1604.07914.
[35] T. Moriya. New Mechanism of Anisotropic Superexchange Interaction , 1960 .
[36] T. Monz,et al. Process tomography of ion trap quantum gates. , 2006, Physical review letters.
[37] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[38] Shi-Liang Zhu,et al. Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.
[39] Riccardo Mannella,et al. High-fidelity quantum driving , 2011, Nature Physics.
[40] Shi-Liang Zhu,et al. Unconventional geometric quantum computation. , 2003, Physical Review Letters.
[41] Shi-Liang Zhu,et al. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. , 2005, Physical review letters.
[42] N. Zanghí,et al. On the stability of quantum holonomic gates , 2012, 1209.1693.
[43] F. J. Heremans,et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system , 2016, Nature Physics.
[44] F. Schmidt-Kaler,et al. Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.
[45] M. Feng,et al. Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator , 2012 .
[46] F. Joseph Heremans,et al. Optical manipulation of the Berry phase in a solid-state spin qubit , 2016 .
[47] Paolo Zanardi,et al. Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .
[48] Vahid Azimi Mousolou,et al. Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.
[49] E Knill,et al. Preparation of Entangled States through Hilbert Space Engineering. , 2016, Physical review letters.
[50] Aharonov,et al. Phase change during a cyclic quantum evolution. , 1987, Physical review letters.
[51] Erik Sjöqvist,et al. Geometric phases in quantum information , 2015 .
[52] Shi-Liang Zhu,et al. Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems , 2002, quant-ph/0210027.
[53] T. Monz,et al. Realization of universal ion-trap quantum computation with decoherence-free qubits. , 2009, Physical review letters.
[54] Klaus Molmer,et al. Entanglement and quantum computation with ions in thermal motion , 2000 .
[55] Li-Xiang Cen,et al. Scalable quantum computation in decoherence-free subspaces with trapped ions , 2006, quant-ph/0603222.
[56] Xi Chen,et al. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms , 2016, Nature Communications.
[57] Hui Yan,et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .
[58] K. Mølmer,et al. QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.
[59] Dieter Suter,et al. Colloquium : Protecting quantum information against environmental noise , 2016 .
[60] Hui Sun,et al. Geometric entangling gates in decoherence-free subspaces with minimal requirements. , 2009, Physical review letters.
[61] Jiannis K. Pachos,et al. Decoherence-free dynamical and geometrical entangling phase gates (9 pages) , 2004 .
[62] Erik Sjöqvist,et al. A new phase in quantum computation , 2008 .
[63] Gabriele De Chiara,et al. Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.
[64] S. Berger,et al. Exploring the effect of noise on the Berry phase , 2013, 1302.3305.
[65] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .
[66] Nonadiabatic geometric quantum computation using a single-loop scenario (4 pages) , 2005, quant-ph/0502090.