The Topological Derivative of the Dirichlet Integral Under Formation of a Thin Ligament

We construct and justify the asymptotic expansion of a solution and the corresponding energy functional of the mixed boundary-value problem for the Poisson equation in a domain with a ligament, i.e., thin curvilinear strip connecting two small parts of the boundary outside the domain. Asymptotic analysis is required in the theory of shape optimization; therefore, in contrast to other publications, we use no simplifying assumptions of the flattening of the boundary near the junction zones.

[1]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[2]  Alexander Movchan,et al.  Asymptotic Analysis of Fields in Multi-Structures , 1999 .

[3]  S. Nazarov Junction problems of bee-on-ceiling type in the theory of anisotropic elasticity , 1995 .

[4]  Сергей Александрович Назаров,et al.  Асимптотический анализ произвольно анизотропной пластины переменной толщины (пологой оболочки)@@@Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell) , 2000 .

[5]  Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod , 1996 .

[6]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[7]  Philippe G. Ciarlet,et al.  Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .

[8]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[9]  S. Nazarov,et al.  Junctions of singularly degenerating domains with different limit dimensions. II , 1996 .

[10]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[11]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[12]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .