Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO–LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

[1]  Garnet Kin-Lic Chan,et al.  Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. , 2013, The Journal of chemical physics.

[2]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[3]  Jean-Pierre Aubin,et al.  Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .

[4]  I. Lindgren,et al.  On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces , 1987 .

[5]  Francesco A Evangelista,et al.  High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems. , 2006, The Journal of chemical physics.

[6]  J. Pittner,et al.  State-specific Brillouin–Wigner multireference coupled cluster study of the F2 molecule: assessment of the a posteriori size-extensivity correction , 2001 .

[7]  J Eisert,et al.  Fermionic Orbital Optimization in Tensor Network States. , 2015, Physical review letters.

[8]  I. McCulloch,et al.  The non-Abelian density matrix renormalization group algorithm , 2002 .

[9]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[10]  Libor Veis,et al.  The correlation theory of the chemical bond , 2016, Scientific Reports.

[11]  P. Piecuch,et al.  In Search of the Relationship between Multiple Solutions Characterizing Coupled-Cluster Theories , 2000 .

[12]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[13]  Jun Shen,et al.  Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: the formula for general active spaces and its applications for multibond breaking systems. , 2008, The Journal of chemical physics.

[14]  F. M. Faulstich,et al.  The coupled-cluster formalism – a mathematical perspective , 2018, Molecular Physics.

[15]  Jean-Paul Malrieu,et al.  Intermediate Hamiltonians as a new class of effective Hamiltonians , 1985 .

[16]  S. Wilson,et al.  On the use of Brillouin-Wigner perturbation theory for many-body systems , 2000 .

[17]  Kaldor Intruder states and incomplete model spaces in multireference coupled-cluster theory: The 2p2 states of Be. , 1988, Physical review. A, General physics.

[18]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[19]  Stolarczyk,et al.  Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method. , 1985, Physical review. A, General physics.

[20]  Ivan Hubač,et al.  Size-extensivity correction for the state-specific multireference Brillouin–Wigner coupled-cluster theory , 2000 .

[21]  H. Monkhorst,et al.  Coupled-cluster method with optimized reference state , 1984 .

[22]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[23]  M. Nooijen,et al.  A state-specific partially internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[24]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[25]  Ludwik Adamowicz,et al.  Automated generation of coupled-cluster diagrams: implementation in the multireference state-specific coupled-cluster approach with the complete-active-space reference. , 2005, The Journal of chemical physics.

[26]  E. Fertitta,et al.  Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach , 2014, 1406.7038.

[27]  Dipayan Datta,et al.  An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications. , 2009, The Journal of chemical physics.

[28]  Rodney J. Bartlett,et al.  A Hilbert space multi-reference coupled-cluster study of the H4 model system , 1991 .

[29]  John A. Parkhill,et al.  Cost-effective description of strong correlation: Efficient implementations of the perfect quadruples and perfect hextuples models. , 2016, The Journal of chemical physics.

[30]  Thorsten Rohwedder,et al.  The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .

[31]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[32]  Thomas M Henderson,et al.  Seniority-based coupled cluster theory. , 2014, The Journal of chemical physics.

[33]  Jürgen Gauss,et al.  State‐specific multireference coupled‐cluster theory , 2013 .

[34]  Ludwik Adamowicz,et al.  New approach to the state-specific multireference coupled-cluster formalism , 2000 .

[35]  G. Zaránd,et al.  Density matrix numerical renormalization group for non-Abelian symmetries , 2008, 0802.4332.

[36]  P. Piecuch,et al.  The State-Universal Multi-Reference Coupled-Cluster Theory: An Overview of Some Recent Advances , 2002 .

[37]  Hubac,et al.  Size-consistent Brillouin-Wigner perturbation theory with an exponentially parametrized wave function: Brillouin-Wigner coupled-cluster theory. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[38]  Stolarczyk,et al.  Coupled-cluster method in Fock space. III. On similarity transformation of operators in Fock space. , 1988, Physical review. A, General physics.

[39]  Markus Reiher,et al.  Spin-adapted matrix product states and operators. , 2016, The Journal of chemical physics.

[40]  Jürgen Gauss,et al.  State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. , 2004, The Journal of chemical physics.

[41]  Ali Alavi,et al.  Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. , 2015, The Journal of chemical physics.

[42]  Ors Legeza,et al.  Simulating strongly correlated quantum systems with tree tensor networks , 2010, 1006.3095.

[43]  Debashis Mukherjee,et al.  Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene , 1977 .

[44]  Michael Hanrath,et al.  An exponential multireference wave-function Ansatz. , 2005, The Journal of chemical physics.

[45]  Stolarczyk,et al.  Coupled-cluster method in Fock space. IV. Calculation of expectation values and transition moments. , 1988, Physical review. A, General physics.

[46]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[47]  J. Cizek,et al.  Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems , 1990 .

[48]  J. Pittner,et al.  State-Specific Brillouin−Wigner Multireference Coupled Cluster Study of the Singlet−Triplet Separation in the Tetramethyleneethane Diradical , 2001 .

[49]  Ludwik Adamowicz,et al.  STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER THEORY EMPLOYING THE SINGLE-REFERENCE FORMALISM : IMPLEMENTATION AND APPLICATION TO THE H8 MODEL SYSTEM , 1994 .

[50]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[51]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[52]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[53]  S. Chattopadhyay,et al.  Development of a linear response theory based on a state-specific multireference coupled cluster formalism , 2000 .

[54]  M. Reiher,et al.  Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.

[55]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[56]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[57]  H. Monkhorst,et al.  Analytic connection between configuration–interaction and coupled‐cluster solutions , 1978 .

[58]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[59]  A. Alavi,et al.  The Intricate Case of Tetramethyleneethane: A Full Configuration Interaction Quantum Monte Carlo Benchmark and Multireference Coupled Cluster Studies. , 2018, Journal of chemical theory and computation.

[60]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[61]  Karol Kowalski,et al.  Towards Complete Solutions to Systems of Nonlinear Equations of Many-Electron Theories , 1998 .

[62]  Evgeny Epifanovsky,et al.  Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes. , 2017, Journal of chemical theory and computation.

[63]  Frank Neese,et al.  Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. , 2016, The journal of physical chemistry letters.

[64]  Shuhua Li,et al.  Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: the formulation and test applications for single bond breaking. , 2007, The Journal of chemical physics.

[65]  John A. Parkhill,et al.  Orbital optimisation in the perfect pairing hierarchy: applications to full-valence calculations on linear polyacenes , 2017, 1705.01678.

[66]  L. A. Rukhovets,et al.  Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .

[67]  Henrik Koch,et al.  The multilevel CC3 coupled cluster model. , 2016, The Journal of chemical physics.

[68]  H. Monkhorst,et al.  Quasiparticle Fock-space coupled-cluster theory , 2010 .

[69]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. II: A model study on H8 , 1992 .

[70]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[71]  T. Zivkovic Existence and reality of solutions of the coupled‐cluster equations , 2009 .

[72]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[73]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[74]  Rodney J Bartlett,et al.  Coupled-cluster method tailored by configuration interaction. , 2005, The Journal of chemical physics.

[75]  R. Schneider,et al.  Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems , 2015, Journal of chemical theory and computation.

[76]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[77]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  Karol Kowalski,et al.  Renormalized CCSD(T) and CCSD(TQ) approaches: Dissociation of the N2 triple bond , 2000 .

[79]  S. Chattopadhyay,et al.  Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories , 1999 .

[80]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[81]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[82]  Reinhold Schneider,et al.  Error estimates for the Coupled Cluster method , 2013 .

[83]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[84]  O. Legeza,et al.  Quantum data compression, quantum information generation, and the density-matrix renormalization group method , 2004, cond-mat/0401136.

[85]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[86]  K. Jankowski,et al.  A valence-universal coupled-cluster single- and double-excitations method for atoms. III. Solvability problems in the presence of intruder states , 1994 .

[87]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[88]  Reinhold Schneider,et al.  Analysis of the projected coupled cluster method in electronic structure calculation , 2009, Numerische Mathematik.

[89]  I. Lindgren Linked-Diagram and Coupled-Cluster Expansions for Multi-Configurational, Complete and Incomplete Model Spaces , 1985 .

[90]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[91]  Josef Paldus,et al.  Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: diagrammatic formulation , 1992 .

[92]  Liguo Kong,et al.  Connection between a few Jeziorski‐Monkhorst ansatz‐based methods , 2009 .

[93]  Stolarczyk,et al.  Coupled-cluster method in Fock space. I. General formalism. , 1985, Physical review. A, General physics.

[94]  H. Weidenmüller,et al.  The effective interaction in nuclei and its perturbation expansion: An algebraic approach , 1972 .

[95]  I. I. Ukrainskii New variational function in the theory of quasi-one-dimensional metals , 1977 .

[96]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[97]  F. Verstraete,et al.  T3NS: Three-Legged Tree Tensor Network States. , 2018, Journal of chemical theory and computation.

[98]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[99]  P. Mach,et al.  Single-root multireference Brillouin-Wigner coupled-cluster theory: Applicability to the F2 molecule , 1998 .

[100]  J. Paldus,et al.  Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function , 1989 .

[101]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[102]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[103]  Legeza,et al.  Accuracy of the density-matrix renormalization-group method. , 1996, Physical review. B, Condensed matter.

[104]  Per-Olov Löwdin,et al.  On the stability problem of a pair of adjoint operators , 1983 .

[105]  Simen Kvaal,et al.  Analysis of the Extended Coupled-Cluster Method in Quantum Chemistry , 2017, SIAM J. Numer. Anal..