On the behavior of dissipative systems in contact with a heat bath : application to Andrade creep

We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.

[1]  G. Daehn Primary creep transients due to non-uniform obstacle sizes , 2001 .

[2]  Mills,et al.  Criticality in the plastic deformation of Ni3Al. , 1992, Physical review letters.

[3]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[4]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[5]  M. Koslowskia,et al.  A phase-' eld theory of dislocation dynamics , strain hardening and hysteresis in ductile single crystals , 2001 .

[6]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[7]  P. Billingsley,et al.  Probability and Measure , 1980 .

[8]  Michael Ortiz,et al.  Nonconvex energy minimization and dislocation structures in ductile single crystals , 1999 .

[9]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[10]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[11]  E. Andrade The Flow in Metals under Large Constant Stresses , 1914 .

[12]  Alessandro Vespignani,et al.  Dislocation jamming and andrade creep. , 2002, Physical review letters.

[13]  F. W. Wiegel,et al.  Introduction to path-integral methods in physics and polymer science , 1986 .

[14]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[15]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[16]  E. N. da C. Andrade,et al.  Über das zähe Fließen in Metallen und verwandte Erscheinungen = On the viscous flow in metals, and allied phenomena , 1910 .

[17]  S. Contia,et al.  Minimum principles for the trajectories of systems governed by rate problems , 2008 .

[18]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[19]  Michael Ortiz,et al.  A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems , 2008 .

[20]  L. Kantorovich On the Translocation of Masses , 2006 .

[21]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[22]  Proceedings of the Royal Society (London) , 1906, Science.

[23]  Adriana Garroni,et al.  Γ-Limit of a Phase-Field Model of Dislocations , 2005, SIAM J. Math. Anal..

[24]  Laurent Stainier,et al.  a Phase-Field Theory of Dislocation Dynamics, Strain Hardening , 2002 .

[25]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[26]  A. Visintin,et al.  On A Class Of Doubly Nonlinear Evolution Equations , 1990 .

[27]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[28]  A. Cottrell Criticality in Andrade creep , 1996 .

[29]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .