Retained free energy as a driving force for phase transformation during rapid solidification of stainless steel alloys in microgravity

[1]  D. Matson,et al.  Identifying metastable interface potency limits during steel alloy transformations , 2018 .

[2]  S. Schneider,et al.  Use of Thermophysical Properties to Select and Control Convection During Rapid Solidification of Steel Alloys Using Electromagnetic Levitation on the Space Station , 2017 .

[3]  D. Matson Nucleation Within the Mushy Zone , 2012 .

[4]  D. Matson,et al.  Solidification of Containerless Undercooled Melts , 2012 .

[5]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[6]  J. R. Rogers,et al.  Containerless Processing Studies in the MSFC Electrostatic Levitator , 2012 .

[7]  Changlin Yang,et al.  Non-equilibrium transformation in hypercooled Fe83B17 alloy , 2007 .

[8]  J. R. Rogers,et al.  Convection in Containerless Processing , 2004, Annals of the New York Academy of Sciences.

[9]  J.J. Shea,et al.  Materials in space-science, technology and exploration, vol. 551 [Book Reveiw] , 2000, IEEE Electrical Insulation Magazine.

[10]  Louise Poissant Part I , 1996, Leonardo.

[11]  M. Flemings,et al.  Solidification of undercooled Fe-Cr-Ni alloys: Part I. Thermal behavior , 1995 .

[12]  G. Shao,et al.  Prediction of phase selection in rapid solidification using time dependent nucleation theory , 1994 .

[13]  西岡 一水 Homogeneous nucleation and growth of droplets in vapors, J. Feder, K. C. Russell, J.Lothe and G. M. Pound, Advances in Phys., 15, 111-178(1966) : 気相からの均一核生成理論 , 1976 .

[14]  K. C. Russell Grain boundary nucleation kinetics , 1969 .

[15]  K. C. Russell Linked flux analysis of nucleation in condensed phases , 1968 .

[16]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[17]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[18]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .