PUISEUX POWER SERIES SOLUTIONS FOR SYSTEMS OF EQUATIONS

We give an algorithm to compute term-by-term multivariate Puiseux series expansions of series arising as local parametrizations of zeroes of systems of algebraic equations at singular points. The algorithm is an extension of Newton's method for plane algebraic curves, replacing the Newton polygon by the tropical variety of the ideal generated by the system. As a corollary we deduce a property of tropical varieties of quasi-ordinary singularities.

[1]  Eugenii Shustin,et al.  Tropical Algebraic Geometry , 2007 .

[2]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[3]  H. Hilton Plane algebraic curves , 1921 .

[4]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[5]  G. Mikhalkin,et al.  Enumeration of curves via floor diagrams , 2007, 0706.0083.

[6]  Rekha R. Thomas,et al.  Computing Tropical Varieties , 2008 .

[7]  C. Hoffmann Algebraic curves , 1988 .

[8]  J. Cano,et al.  Power series solutions for non-linear PDE's , 2003, ISSAC '03.

[9]  P. D. González Pérez Singularit'es quasi-ordinaires toriques et poly`edre de Newton du discriminant , 2000 .

[10]  D. T. Whiteside,et al.  The mathematical papers of Isaac Newton , 1967 .

[11]  Le Dung Trang,et al.  The invariance of Milnor's number implies the invariance of the topological type , 1976 .

[12]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[13]  Polyhedral cones and monomial blowing-ups , 2006 .

[14]  岡 睦雄,et al.  Non-degenerate complete intersection singularity , 1997 .

[15]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[16]  Eric Katz A Tropical Toolkit , 2006 .

[17]  F. J. Rayner Algebraically Closed Fields Analogous to Fields of Puiseux Series , 1974 .

[18]  Shreeram S. Abhyankar,et al.  On the Ramification of algebraic functions , 1955 .

[19]  F. Aroca,et al.  A Family of Algebraically Closed Fields Containing Polynomials in Several Variables , 2009 .

[20]  Thorsten Theobald,et al.  Tropical bases by regular projections , 2007 .

[21]  F. Aroca,et al.  NORMAL QUASI-ORDINARY SINGULARITIES , 2005 .

[22]  Anders Nedergaard Jensen,et al.  An algorithm for lifting points in a tropical variety , 2007, 0705.2441.

[23]  J. McDonald Fractional Power Series Solutions for Systems of Equations , 2002, Discret. Comput. Geom..

[24]  A. G. Kouchnirenko Polyèdres de Newton et nombres de Milnor , 1976 .

[25]  Jan Draisma A tropical approach to secant dimensions , 2006 .

[26]  Henry B. Fine,et al.  On the Functions Defined by Differential Equations, with an Extension of the Puiseux Polygon Construction to these Equations , 1889 .

[27]  P. Popescu-Pampu Two-dimensional iterated torus knots and quasi-ordinary surface singularities , 2003 .

[28]  V. Puiseux Recherches sur les fonctions algébriques. , 1850 .

[29]  Sam Payne,et al.  Fibers of tropicalization , 2007, 0705.1732.

[30]  Andreas Gathmann,et al.  Tropical algebraic geometry , 2006 .

[31]  F. Aroca Puiseux parametric equations of analytic sets , 2004 .

[32]  J. Maurer Puiseux expansion for space curves , 1980 .

[33]  John K. McDonald Fiber polytopes and fractional power series , 1995 .

[34]  J. Cano,et al.  Formal Solutions of Linear PDEs and Convex Polyhedra , 2001, J. Symb. Comput..