PUISEUX POWER SERIES SOLUTIONS FOR SYSTEMS OF EQUATIONS
暂无分享,去创建一个
Giovanna Ilardi | Lucia López de Medrano | Fuensanta Aroca | Lucia Lopez de Medrano | F. Aroca | G. Ilardi
[1] Eugenii Shustin,et al. Tropical Algebraic Geometry , 2007 .
[2] B. Sturmfels,et al. First steps in tropical geometry , 2003, math/0306366.
[3] H. Hilton. Plane algebraic curves , 1921 .
[4] Douglas Lind,et al. Non-archimedean amoebas and tropical varieties , 2004, math/0408311.
[5] G. Mikhalkin,et al. Enumeration of curves via floor diagrams , 2007, 0706.0083.
[6] Rekha R. Thomas,et al. Computing Tropical Varieties , 2008 .
[7] C. Hoffmann. Algebraic curves , 1988 .
[8] J. Cano,et al. Power series solutions for non-linear PDE's , 2003, ISSAC '03.
[9] P. D. González Pérez. Singularit'es quasi-ordinaires toriques et poly`edre de Newton du discriminant , 2000 .
[10] D. T. Whiteside,et al. The mathematical papers of Isaac Newton , 1967 .
[11] Le Dung Trang,et al. The invariance of Milnor's number implies the invariance of the topological type , 1976 .
[12] J. Stillwell,et al. Plane Algebraic Curves , 1986 .
[13] Polyhedral cones and monomial blowing-ups , 2006 .
[14] 岡 睦雄,et al. Non-degenerate complete intersection singularity , 1997 .
[15] David E. Speyer,et al. The tropical Grassmannian , 2003, math/0304218.
[16] Eric Katz. A Tropical Toolkit , 2006 .
[17] F. J. Rayner. Algebraically Closed Fields Analogous to Fields of Puiseux Series , 1974 .
[18] Shreeram S. Abhyankar,et al. On the Ramification of algebraic functions , 1955 .
[19] F. Aroca,et al. A Family of Algebraically Closed Fields Containing Polynomials in Several Variables , 2009 .
[20] Thorsten Theobald,et al. Tropical bases by regular projections , 2007 .
[21] F. Aroca,et al. NORMAL QUASI-ORDINARY SINGULARITIES , 2005 .
[22] Anders Nedergaard Jensen,et al. An algorithm for lifting points in a tropical variety , 2007, 0705.2441.
[23] J. McDonald. Fractional Power Series Solutions for Systems of Equations , 2002, Discret. Comput. Geom..
[24] A. G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor , 1976 .
[25] Jan Draisma. A tropical approach to secant dimensions , 2006 .
[26] Henry B. Fine,et al. On the Functions Defined by Differential Equations, with an Extension of the Puiseux Polygon Construction to these Equations , 1889 .
[27] P. Popescu-Pampu. Two-dimensional iterated torus knots and quasi-ordinary surface singularities , 2003 .
[28] V. Puiseux. Recherches sur les fonctions algébriques. , 1850 .
[29] Sam Payne,et al. Fibers of tropicalization , 2007, 0705.1732.
[30] Andreas Gathmann,et al. Tropical algebraic geometry , 2006 .
[31] F. Aroca. Puiseux parametric equations of analytic sets , 2004 .
[32] J. Maurer. Puiseux expansion for space curves , 1980 .
[33] John K. McDonald. Fiber polytopes and fractional power series , 1995 .
[34] J. Cano,et al. Formal Solutions of Linear PDEs and Convex Polyhedra , 2001, J. Symb. Comput..