An Adaptive Stepsize RRT Planning Algorithm for Open-Chain Robots

Motion planning algorithms that rely upon the randomly exploring random tree (RRT) typically require the user to choose an appropriate stepsize; this is generally a highly problem-dependent and time-consuming process requiring trial and error. We propose an adaptive stepsize RRT path planning algorithm for open-chain robots in which only a minimum obstacle size parameter is required as input. Exploiting the structure of an open chain's forward kinematics as well as a standard inequality bound on the operator-induced matrix norm, we derive a maximum Cartesian displacement bound between two configurations of the same robot, and use this bound to determine a maximum allowable stepsize at each iteration. Numerical experiments involving a ten-DOF planar open chain and a seven-axis industrial robot arm demonstrate the practical advantages of our algorithm over standard fixed-stepsize RRT planning algorithms.

[1]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[3]  W. Marsden I and J , 2012 .

[4]  Steven M. LaValle,et al.  Motion Planning : The Essentials , 2011 .

[5]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[6]  Steven M. LaValle Motion Planning : Wild Frontiers , 2011 .

[7]  David J. Fleet,et al.  Gaussian Process Dynamical Models , 2005, NIPS.

[8]  Max Q.-H. Meng,et al.  Variant step size RRT: An efficient path planner for UAV in complex environments , 2016, 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR).

[9]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[10]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[11]  Steven M. LaValle,et al.  Motion Planning Part I: The Essentials , 2011 .

[12]  Milan Simic,et al.  Sampling-Based Robot Motion Planning: A Review , 2014, IEEE Access.

[13]  Lydia E. Kavraki,et al.  On the implementation of single-query sampling-based motion planners , 2010, 2010 IEEE International Conference on Robotics and Automation.

[14]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[15]  J. Rohn Computing the norm ∥A∥∞,1 is NP-hard , 2000 .

[16]  Joel A. Tropp,et al.  Topics in sparse approximation , 2004 .