Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development.

[1]  Matthew D. Miller,et al.  From fragments to leads: novel bacterial NAD+-dependent DNA ligase inhibitors , 2015 .

[2]  P. Boriack-Sjodin,et al.  Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations. , 2014, Bioorganic & medicinal chemistry letters.

[3]  F. Maltais,et al.  Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides. , 2012, Bioorganic & medicinal chemistry letters.

[4]  P. Charifson,et al.  Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part 2: 4-amino-pyrido[2,3-d]pyrimidin-5(8H)-ones. , 2012, Bioorganic & medicinal chemistry letters.

[5]  H. Giamarellou,et al.  Multidrug-Resistant Gram-Negative Infections , 2009, Drugs.

[6]  M. Gowravaram,et al.  Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series. , 2012, Bioorganic & medicinal chemistry letters.

[7]  M. Gowravaram,et al.  Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity. , 2011, Bioorganic & medicinal chemistry letters.

[8]  P. Knochel,et al.  Room temperature cross-coupling of highly functionalized organozinc reagents with thiomethylated N-heterocycles by nickel catalysis. , 2010, The Journal of organic chemistry.

[9]  S. Shuman DNA Ligases: Progress and Prospects* , 2009, The Journal of Biological Chemistry.

[10]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[11]  D. Yan,et al.  Identification and characterization of an inhibitor specific to bacterial NAD+‐dependent DNA ligases , 2008, The FEBS journal.

[12]  Ashok Kumar Jha,et al.  NAD+‐dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: Novel structure‐function relationship and identification of a specific inhibitor , 2007, Proteins.

[13]  D. Dube,et al.  Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I , 2005, Nucleic acids research.

[14]  P. Vogel,et al.  Organosulfur compounds: electrophilic reagents in transition-metal-catalyzed carbon-carbon bond-forming reactions. , 2005, Angewandte Chemie.

[15]  R. Tripathi,et al.  NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis , 2005, Journal of Biological Chemistry.

[16]  S. Shuman NAD+ specificity of bacterial DNA ligase revealed. , 2004, Structure.

[17]  T. Lampe,et al.  Specific and Potent Inhibition of NAD+-dependent DNA Ligase by Pyridochromanones* , 2003, Journal of Biological Chemistry.

[18]  L. S. Liebeskind,et al.  Heteroaromatic thioether-organostannane cross-coupling. , 2003, Organic letters.

[19]  J. Maillard,et al.  Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria , 2002, Journal of applied microbiology.

[20]  J. Šrogl,et al.  Heteroaromatic thioether-boronic acid cross-coupling under neutral reaction conditions. , 2002, Organic letters.

[21]  L. Tilley,et al.  Specific Inhibition of the Eubacterial DNA Ligase by Arylamino Compounds , 1999, Antimicrobial Agents and Chemotherapy.

[22]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .