Chemical modification of diamond surface by a donor–acceptor organic chromophore (P1): Optimization of surface chemistry and electronic properties of diamond

[1]  L. Kavan,et al.  Insight into boron-doped diamond Raman spectra characteristic features , 2017 .

[2]  L. Kavan Electrochemistry and dye-sensitized solar cells , 2017 .

[3]  J. Wrachtrup,et al.  Optical imaging of localized chemical events using programmable diamond quantum nanosensors , 2017, Nature Communications.

[4]  H. Bender,et al.  Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films. , 2016, ACS applied materials & interfaces.

[5]  L. Kavan,et al.  Efficiency and stability of spectral sensitization of boron-doped-diamond electrodes through covalent anchoring of a donor-acceptor organic chromophore (P1). , 2016, Physical chemistry chemical physics : PCCP.

[6]  H. Boyen,et al.  Benchtop Fluorination of Fluorescent Nanodiamonds on a Preparative Scale: Toward Unusually Hydrophilic Bright Particles , 2016 .

[7]  Lin Li,et al.  Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. , 2015, Journal of the American Chemical Society.

[8]  L. Kavan,et al.  Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. , 2015, Physical chemistry chemical physics : PCCP.

[9]  L. Kavan,et al.  Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions , 2014 .

[10]  A. Pasquarelli,et al.  Functionalization of boron-doped nanocrystalline diamond with N3 dye molecules. , 2014, ACS applied materials & interfaces.

[11]  P. Cígler,et al.  Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis , 2014 .

[12]  J. M. Gardner,et al.  Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor , 2014, Scientific Reports.

[13]  Satvasheel Powar,et al.  Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates , 2014 .

[14]  Yi-bing Cheng,et al.  Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells , 2014, Scientific Reports.

[15]  L. Kavan,et al.  Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects , 2013 .

[16]  Satvasheel Powar,et al.  Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(II)/(III) electrolytes. , 2013, Angewandte Chemie.

[17]  R. Hamers,et al.  Electronic Structure of Diamond Surfaces Functionalized by Ru(tpy) 2 , 2012 .

[18]  N. Nath,et al.  Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[19]  Anders Hagfeldt,et al.  Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. , 2012, Chemical communications.

[20]  Milos Nesladek,et al.  Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity , 2011 .

[21]  K. Haenen,et al.  Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal–insulator transition , 2011 .

[22]  H. Ihmels,et al.  Elucidation of Different Steps Involved in Allylamine Functionalization of the Diamond Surface and Its Polymerization by Time-of-Flight Secondary Ion Mass Spectrometry , 2010 .

[23]  Y. Zhong,et al.  Oxygen‐Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics , 2010 .

[24]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[25]  T. Brinck,et al.  Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells , 2010 .

[26]  M. Stutzmann,et al.  Electronic and optical properties of boron-doped nanocrystalline diamond films , 2009 .

[27]  Y. Zhong,et al.  Diamond-based molecular platform for photoelectrochemistry. , 2008, Journal of the American Chemical Society.

[28]  Yoshihiro Takeda,et al.  Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells , 2008 .

[29]  Milos Nesladek,et al.  Growth, electronic properties and applications of nanodiamond , 2008 .

[30]  Tomas Edvinsson,et al.  Design of an organic chromophore for p-type dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[31]  Y. Zhong,et al.  Suzuki Coupling of Aryl Organics on Diamond , 2008 .

[32]  A. Kraft Doped Diamond: A Compact Review on a New, Versatile Electrode Material , 2007, International Journal of Electrochemical Science.

[33]  S. Wieder,et al.  Large area microwave coating technology , 2006 .

[34]  M. Grätzel Dye-sensitized solar cells , 2003 .

[35]  S. Ida,et al.  Chemical modification of diamond surface with CH3(CH2)nCOOH using benzoyl peroxide , 2003 .

[36]  S. Ida,et al.  Chemical modification of hydrogenated diamond surface using benzoyl peroxides , 2002 .

[37]  J. N. Russell,et al.  Photochemical Functionalization of Diamond Films , 2002 .

[38]  O. Weis,et al.  Boron-Doped Homoepitaxial Diamond Layers: Fabrication, Characterization, and Electronic Applications , 1996 .

[39]  L. Kavan,et al.  Refined analysis of boron doped diamond Raman spectrum , 2017 .

[40]  Milos Nesladek,et al.  Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution , 2013 .

[41]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[42]  C. Comninellis,et al.  Chapter 5 Industrial applications of diamond electrodes , 2004 .