Investigation on thermal conductivity of silver-based porous materials by finite difference method
暂无分享,去创建一个
[1] L. Benabou,et al. Simulation of silver nanoparticles sintering at high temperatures based on theoretical evaluations of surface and grain boundary mobilities , 2020 .
[2] L. Benabou,et al. Numerical modeling of low-temperature and low-pressure sintering of silver microparticles based on surface and grain boundary diffusion mechanisms , 2020, Mechanics of Advanced Materials and Structures.
[3] Patrick Tamain,et al. A high-order non field-aligned approach for the discretization of strongly anisotropic diffusion operators in magnetic fusion , 2020, Comput. Phys. Commun..
[4] Y. Gong,et al. Crack Effect on the Equivalent Thermal Conductivity of Porously Sintered Silver , 2020, Journal of Electronic Materials.
[5] F. Qin,et al. Evaluation of thermal conductivity for sintered silver considering aging effect with microstructure based model , 2020 .
[6] Jacques Liandrat,et al. A new conservative finite-difference scheme for anisotropic elliptic problems in bounded domain , 2020, J. Comput. Phys..
[7] J. Carr,et al. Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures , 2018, Journal of Electronic Materials.
[8] Abdellatif Imad,et al. Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches , 2015 .
[9] Tomasz S. Wiśniewski,et al. A review of models for effective thermal conductivity of composite materials , 2014 .
[10] Barry Koren,et al. Finite-difference schemes for anisotropic diffusion , 2014, J. Comput. Phys..
[11] Li Ren,et al. New Scheme of Finite Difference Heterogeneous Multiscale Method to Solve Saturated Flow in Porous Media , 2014 .
[12] Marcia B. H. Mantelli,et al. Effective thermal conductivity of sintered porous media: Model and experimental validation , 2013 .
[13] Sibylle Günter,et al. Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..
[14] K. Lackner,et al. Numerical modeling of diffusive heat transport across magnetic islands and highly stochastic layers , 2007 .
[15] Sibylle Günter,et al. Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .
[16] E Weinan,et al. Finite difference heterogeneous multi-scale method for homogenization problems , 2003 .
[17] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes , 2001 .
[18] Mikhail Shashkov,et al. Approximation of boundary conditions for mimetic finite-difference methods , 1998 .
[19] S. Hazanov,et al. Hill condition and overall properties of composites , 1998 .
[20] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .
[21] S. Hazanov,et al. On overall properties of elastic heterogeneous bodies smaller than the representative volume , 1995 .
[22] M. Shashkov,et al. Support-operator finite-difference algorithms for general elliptic problems , 1995 .
[23] Sia Nemat-Nasser,et al. Bounds and estimates of overall moduli of composites with periodic microstructure , 1993 .
[24] Jim E. Morel,et al. A cell-centered lagrangian-mesh diffusion differencing scheme , 1992 .
[25] S. Shtrikman,et al. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .
[26] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[27] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .