Investigation on thermal conductivity of silver-based porous materials by finite difference method

[1]  L. Benabou,et al.  Simulation of silver nanoparticles sintering at high temperatures based on theoretical evaluations of surface and grain boundary mobilities , 2020 .

[2]  L. Benabou,et al.  Numerical modeling of low-temperature and low-pressure sintering of silver microparticles based on surface and grain boundary diffusion mechanisms , 2020, Mechanics of Advanced Materials and Structures.

[3]  Patrick Tamain,et al.  A high-order non field-aligned approach for the discretization of strongly anisotropic diffusion operators in magnetic fusion , 2020, Comput. Phys. Commun..

[4]  Y. Gong,et al.  Crack Effect on the Equivalent Thermal Conductivity of Porously Sintered Silver , 2020, Journal of Electronic Materials.

[5]  F. Qin,et al.  Evaluation of thermal conductivity for sintered silver considering aging effect with microstructure based model , 2020 .

[6]  Jacques Liandrat,et al.  A new conservative finite-difference scheme for anisotropic elliptic problems in bounded domain , 2020, J. Comput. Phys..

[7]  J. Carr,et al.  Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures , 2018, Journal of Electronic Materials.

[8]  Abdellatif Imad,et al.  Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches , 2015 .

[9]  Tomasz S. Wiśniewski,et al.  A review of models for effective thermal conductivity of composite materials , 2014 .

[10]  Barry Koren,et al.  Finite-difference schemes for anisotropic diffusion , 2014, J. Comput. Phys..

[11]  Li Ren,et al.  New Scheme of Finite Difference Heterogeneous Multiscale Method to Solve Saturated Flow in Porous Media , 2014 .

[12]  Marcia B. H. Mantelli,et al.  Effective thermal conductivity of sintered porous media: Model and experimental validation , 2013 .

[13]  Sibylle Günter,et al.  Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..

[14]  K. Lackner,et al.  Numerical modeling of diffusive heat transport across magnetic islands and highly stochastic layers , 2007 .

[15]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[16]  E Weinan,et al.  Finite difference heterogeneous multi-scale method for homogenization problems , 2003 .

[17]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes , 2001 .

[18]  Mikhail Shashkov,et al.  Approximation of boundary conditions for mimetic finite-difference methods , 1998 .

[19]  S. Hazanov,et al.  Hill condition and overall properties of composites , 1998 .

[20]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .

[21]  S. Hazanov,et al.  On overall properties of elastic heterogeneous bodies smaller than the representative volume , 1995 .

[22]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[23]  Sia Nemat-Nasser,et al.  Bounds and estimates of overall moduli of composites with periodic microstructure , 1993 .

[24]  Jim E. Morel,et al.  A cell-centered lagrangian-mesh diffusion differencing scheme , 1992 .

[25]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[26]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[27]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .