Space-time least-squares isogeometric method and efficient solver for parabolic problems
暂无分享,去创建一个
Giancarlo Sangalli | Matteo Negri | Mattia Tani | Monica Montardini | G. Sangalli | Matteo Negri | Mattia Tani | Monica Montardini
[1] Ulrich Langer,et al. Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems , 2017, LSSC.
[2] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[3] L. Evans,et al. Partial Differential Equations , 1941 .
[4] Carlos Alberto Dorao,et al. A parallel time-space least-squares spectral element solver for incompressible flow problems , 2007, Appl. Math. Comput..
[5] Giancarlo Sangalli,et al. Matrix-free weighted quadrature for a computationally efficient isogeometric k-method , 2017, Computer Methods in Applied Mechanics and Engineering.
[6] P. Grisvard,et al. 1. Sobolev Spaces , 2011 .
[7] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[8] John R. Rice,et al. Direct solution of partial difference equations by tensor product methods , 1964 .
[9] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[10] F. Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.
[11] Tayfun E. Tezduyar,et al. Space–time fluid mechanics computation of heart valve models , 2014 .
[12] Hitoshi Hattori,et al. Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .
[13] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[14] Einar M. Rønquist,et al. A fast tensor-product solver for incompressible fluid flow in partially deformed three-dimensional domains: Parallel implementation , 2011 .
[15] O. A. Ladyzhenskai︠a︡,et al. Équations aux dérivées partielles de type elliptique , 1968 .
[16] Olaf Steinbach,et al. Space-Time Finite Element Methods for Parabolic Problems , 2015, Comput. Methods Appl. Math..
[17] Isaac Fried,et al. Finite-element analysis of time-dependent phenomena. , 1969 .
[18] J. Aubin,et al. APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.
[19] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[20] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[21] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[22] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[23] Eugene L. Wachspress. Generalized ADI preconditioning , 1984 .
[24] Giancarlo Sangalli,et al. Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..
[25] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[26] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[27] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[28] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[29] Ulrich Langer,et al. Parallel and Robust Preconditioning for Space-Time Isogeometric Analysis of Parabolic Evolution Problems , 2018, SIAM J. Sci. Comput..
[30] Rafael Vázquez,et al. A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..
[31] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[32] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[33] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[34] Victor M. Calo,et al. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..
[35] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[36] J. Tinsley Oden,et al. A GENERAL THEORY OF FINITE ELEMENTS II. APPLICATIONS , 1969 .
[37] Karan S. Surana,et al. A space–time coupled p‐version least‐squares finite element formulation for unsteady fluid dynamics problems , 1994 .
[38] Ulrich Langer,et al. Space–time isogeometric analysis of parabolic evolution problems , 2015, 1509.02008.
[39] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[40] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .
[41] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[42] J. Reynen,et al. A space-time least-square finite element scheme for advection-diffusion equations , 1984 .
[43] Karan S. Surana,et al. A SPACE-TIME COUPLED P-VERSION LEAST SQUARES FINITE ELEMENT FORMULATION FOR UNSTEADY TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS , 1996 .
[44] Andrea Bressan,et al. Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.
[45] John C. Bruch,et al. Transient two‐dimensional heat conduction problems solved by the finite element method , 1974 .
[46] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[47] Pavel B. Bochev,et al. Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.
[48] Giancarlo Sangalli,et al. Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method , 2017, Computer Methods in Applied Mechanics and Engineering.