Space-time least-squares isogeometric method and efficient solver for parabolic problems

In this paper, we propose a space-time least-squares isogeometric method to solve parabolic evolution problems, well suited for high-degree smooth splines in the space-time domain. We focus on the linear solver and its computational efficiency: thanks to the proposed formulation and to the tensor-product construction of space-time splines, we can design a preconditioner whose application requires the solution of a Sylvester-like equation, which is performed efficiently by the fast diagonalization method. The preconditioner is robust w.r.t. spline degree and mesh size. The computational time required for its application, for a serial execution, is almost proportional to the number of degrees-of-freedom and independent of the polynomial degree. The proposed approach is also well-suited for parallelization.

[1]  Ulrich Langer,et al.  Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems , 2017, LSSC.

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  L. Evans,et al.  Partial Differential Equations , 1941 .

[4]  Carlos Alberto Dorao,et al.  A parallel time-space least-squares spectral element solver for incompressible flow problems , 2007, Appl. Math. Comput..

[5]  Giancarlo Sangalli,et al.  Matrix-free weighted quadrature for a computationally efficient isogeometric k-method , 2017, Computer Methods in Applied Mechanics and Engineering.

[6]  P. Grisvard,et al.  1. Sobolev Spaces , 2011 .

[7]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[8]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[9]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[10]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[11]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[12]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[13]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[14]  Einar M. Rønquist,et al.  A fast tensor-product solver for incompressible fluid flow in partially deformed three-dimensional domains: Parallel implementation , 2011 .

[15]  O. A. Ladyzhenskai︠a︡,et al.  Équations aux dérivées partielles de type elliptique , 1968 .

[16]  Olaf Steinbach,et al.  Space-Time Finite Element Methods for Parabolic Problems , 2015, Comput. Methods Appl. Math..

[17]  Isaac Fried,et al.  Finite-element analysis of time-dependent phenomena. , 1969 .

[18]  J. Aubin,et al.  APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.

[19]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[20]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[21]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[22]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[23]  Eugene L. Wachspress Generalized ADI preconditioning , 1984 .

[24]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[25]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[26]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[29]  Ulrich Langer,et al.  Parallel and Robust Preconditioning for Space-Time Isogeometric Analysis of Parabolic Evolution Problems , 2018, SIAM J. Sci. Comput..

[30]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[31]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[32]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[33]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[34]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[35]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[36]  J. Tinsley Oden,et al.  A GENERAL THEORY OF FINITE ELEMENTS II. APPLICATIONS , 1969 .

[37]  Karan S. Surana,et al.  A space–time coupled p‐version least‐squares finite element formulation for unsteady fluid dynamics problems , 1994 .

[38]  Ulrich Langer,et al.  Space–time isogeometric analysis of parabolic evolution problems , 2015, 1509.02008.

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[40]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[41]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[42]  J. Reynen,et al.  A space-time least-square finite element scheme for advection-diffusion equations , 1984 .

[43]  Karan S. Surana,et al.  A SPACE-TIME COUPLED P-VERSION LEAST SQUARES FINITE ELEMENT FORMULATION FOR UNSTEADY TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS , 1996 .

[44]  Andrea Bressan,et al.  Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.

[45]  John C. Bruch,et al.  Transient two‐dimensional heat conduction problems solved by the finite element method , 1974 .

[46]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[47]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[48]  Giancarlo Sangalli,et al.  Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method , 2017, Computer Methods in Applied Mechanics and Engineering.