Importance reweighting reduces dependence on temperature in Gibbs samplers: an application to the coseismic geodetic inverse problem

SUMMARY We employ importance reweighting to extend Gibbs sampling (GS) to a larger class of unnormalized, multidimensional probability functions and to reduce the dependence of the results on critical temperature T ∗ ,w hich is sometimes poorly known. Instead of sampling at T ∗ ,w esample at several sampling temperatures, T S ,i na ninterval centred on an estimate of T ∗ , correcting the results for each temperature to T = 1. Convergence is verified in part by agreement of marginal posterior distributions obtained at different T s .F or the coseismic geodetic problem, experiments with synthetic data suggest that optimal sampling temperature varies inversely with the signal-to-noise ratio (SNR): as signal strength increases, optimal sampling temperature decreases. Inversion of surface displacement data from the 1994 Northridge earthquake confirms coseismic source parameters from other methods, while providing extra information in the form of properly scaled marginal posterior probability density functions.

[1]  K. Feigl,et al.  Coseismic and Postseismic Fault Slip for the 17 August 1999, M = 7.5, Izmit, Turkey Earthquake. , 2000, Science.

[2]  Daniel H. Rothman,et al.  Automatic estimation of large residual statics corrections , 1986 .

[3]  J. Steketee,et al.  SOME GEOPHYSICAL APPLICATIONS OF THE ELASTICITY THEORY OF DISLOCATIONS , 1958 .

[4]  Thomas H. Heaton,et al.  The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data , 1996, Bulletin of the Seismological Society of America.

[5]  Kenneth W. Hudnut,et al.  Co-seismic displacements of the 1994 Northridge, California, earthquake , 1996, Bulletin of the Seismological Society of America.

[6]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[7]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART II: UNCERTAINTY ANALYSIS1 , 1988 .

[8]  Steven N. Ward,et al.  An inversion for slip distribution and fault shape from geodetic observations of the 1983, Borah Peak, Idaho, Earthquake , 1986 .

[9]  J Besag,et al.  DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .

[10]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[11]  Peter M. Shearer,et al.  Analysis of similar event clusters in aftershocks of the 1994 Northridge, California, earthquake , 2003 .

[12]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[13]  L N Frazer,et al.  Rapid Determination of the Critical Temperature in Simulated Annealing Inversion , 1990, Science.

[14]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[15]  Jim Mori,et al.  Overlapping fault planes of the 1971 San Fernando and 1994 Northridge, California earthquakes , 1995 .

[16]  C. Rebbi Monte Carlo Calculations in Lattice Gauge Theories , 1987 .

[17]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[18]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[19]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART I: PRINCIPLES1 , 1988 .

[20]  Y. Okada Surface deformation due to shear and tensile faults in a half-space , 1985 .

[21]  Paul Segall,et al.  Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan , 2001 .

[22]  Michael Creutz,et al.  Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .

[23]  Quantifying data information content in geoacoustic inversion , 2002 .

[24]  David D. Jackson,et al.  Northridge earthquake rupture models based on the global positioning system measurements , 1996, Bulletin of the Seismological Society of America.

[25]  N. Ross Chapman,et al.  Freeze Bath Inversion for Estimation of Geoacoustic Parameters , 2001 .

[26]  Bernd A. Berg,et al.  Locating global minima in optimization problems by a random-cost approach , 1993, Nature.