Optimierung der automatisierten Beatmung bei akutem Lungenversagen mit Hilfe der elektrischen Impedanztomographie (Enhancement of Automated Protective Ventilation Strategies in Respiratory Failure using Electrical Impedance Tomography)

Dieser Beitrag beschreibt die erfolgreiche Umsetzung eines automatischen lungenschonenden Beatmungsverfahrens für Patienten mit akutem Lungenversagen. Der Schwerpunkt liegt auf der Integration der elektrischen Impedanztomographie (EIT) in das Gesamtkonzept und auf der Gewinnung von nichtinvasiven Regelgrößen. This paper presents the successful realisation of an automated lung-protective ventilation method for patients suffering from acute respiratory failure. Main issues are the integration of electrical impedance tomography (EIT) into the ventilation setup and the extraction of reliable process variables.

[1]  C. Carvalho,et al.  Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. , 1998, The New England journal of medicine.

[2]  T L Petty,et al.  Acute respiratory distress in adults. , 1967, Lancet.

[3]  S Leonhardt,et al.  Protective ventilation using electrical impedance tomography , 2007, Physiological measurement.

[4]  Hickling Kg,et al.  Low volume ventilation with permissive hypercapnia in the Adult Respiratory Distress Syndrome. , 1992 .

[5]  S. Leonhardt,et al.  Electrical impedance tomography: changes in distribution of pulmonary ventilation during laparoscopic surgery in a porcine model , 2006, Langenbeck's Archives of Surgery.

[6]  Luciano Gattinoni,et al.  The concept of “baby lung” , 2005, Intensive Care Medicine.

[7]  Brian H. Brown,et al.  Imaging spatial distributions of resistivity using applied potential tomography , 1983 .

[8]  L. Goodman,et al.  What has computed tomography taught us about the acute respiratory distress syndrome? , 2001, American journal of respiratory and critical care medicine.

[9]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[10]  D. Schoenfeld,et al.  Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. , 2000, The New England journal of medicine.

[11]  G. Hahn,et al.  Changes in the thoracic impedance distribution under different ventilatory conditions. , 1995, Physiological measurement.

[12]  K. Peevy,et al.  Mechanisms of ventilator-induced lung injury. , 1993, Critical care medicine.

[13]  G. Hellige,et al.  End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change , 2002, Intensive Care Medicine.