ULTIMATE-START: Subaru tomography adaptive optics research experiment project overview

ULTIMATE-Subaru Tomography Adaptive optics Research experimenT (ULTIMATE-START) is a laser tomography AO project on the Subaru telescope. The project is planned to achieve high Strehl Ratio AO correction in NIR bands, and moderate AO correction in visible bands above 600nm. An asterism of 4 laser guide stars (LGSs) will be launched from the laser launching telescope behind the secondary mirror. The tomography wavefront sensing unit with four 32$times$32 Shack-Hartmann wavefront sensors will be installed behind the current facility LGS AO system, AO188. The deformable mirror of AO188 will be upgraded to a 64$times$64 element DM. The corrected light will be fed to the optical integral field spectrograph, 3DII, and NIR camera and spectrograph, IRCS, through a beam switching optics for IR-side Nasmyth focus instruments under development. The first light of the laser launching system and wavefront sensing unit is planned in 2021.

[1]  Rodolfo Canestrari,et al.  Wavefront corrective lens for the Subaru Laser Launching Telescope , 2008, Astronomical Telescopes + Instrumentation.

[2]  Francois Rigaut,et al.  Current status of the laser guide star upgrade at Subaru Telescope , 2018, Astronomical Telescopes + Instrumentation.

[3]  Carlos Correia,et al.  Object-oriented Matlab adaptive optics toolbox , 2014, Astronomical Telescopes and Instrumentation.

[4]  Naruhisa Takato,et al.  ULTIMATE-SUBARU: simulation update , 2014, Astronomical Telescopes and Instrumentation.

[5]  Olivier Guyon,et al.  Subaru laser guide adaptive optics system: performance and science operation , 2012, Other Conferences.

[6]  Masayuki Akiyama,et al.  Atmospheric turbulence profiling with a Shack-Hartmann wavefront sensor , 2020, Astronomical Telescopes + Instrumentation.

[7]  Olivier Guyon,et al.  Implementation of 188-element curvature-based wavefront sensor and calibration source unit for the Subaru LGSAO system , 2008, Astronomical Telescopes + Instrumentation.

[8]  Julien Lozi,et al.  Overview of AO activities at Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.

[9]  Sam Ragland,et al.  Keck II laser guide star AO system and performance with the TOPTICA/MPBC laser , 2016, Astronomical Telescopes + Instrumentation.

[10]  Olivier Guyon,et al.  Visible low-order wavefront sensor for the Subaru LGSAO system , 2010, Astronomical Telescopes + Instrumentation.

[11]  Mitaka,et al.  Statistics of turbulence parameters at Maunakea using the multiple wavefront sensor data of RAVEN , 2016, 1610.05049.

[12]  Olivier Guyon,et al.  Design of the Subaru laser guide star adaptive optics module , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Koki Terao,et al.  Measurements of image quality and surface shape of microlens arrays for Shack-Hartmann wavefront sensors , 2020, Astronomical Telescopes + Instrumentation.

[14]  Brent Ellerbroek,et al.  Computer simulations and real-time control of ELT AO systems using graphical processing units , 2012, Other Conferences.

[15]  Olivier Guyon,et al.  Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[16]  Hiroshige Yoshida,et al.  Alignment and tolerancing of a mirror relay system for a newly upgraded LGS system on Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.