Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement

[1]  C. Park,et al.  Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling , 2018 .

[2]  H. Bei,et al.  Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy , 2017 .

[3]  Sung Hyuk Park,et al.  Evolution of high-cycle fatigue behavior of extruded AZ91 alloy by artificial cooling during extrusion , 2017 .

[4]  M. P. Phaniraj,et al.  Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement , 2017 .

[5]  Chun‐Sing Lee,et al.  Effect of the amount and temperature of prestrain on tensile and low-cycle fatigue properties of Fe-17Mn-0.5C TRIP/TWIP steel , 2017 .

[6]  M. Koyama,et al.  Overview of hydrogen embrittlement in high-Mn steels , 2017 .

[7]  U. Ramamurty,et al.  Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy , 2017 .

[8]  M. Arita,et al.  Hydrogen diffusion in ultrafine-grained iron with the body-centered cubic crystal structure , 2017 .

[9]  G. Eggeler,et al.  Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy , 2016 .

[10]  Singon Kang,et al.  The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning-induced plasticity steel , 2016 .

[11]  Young-Soo Chun,et al.  Role of Cu on hydrogen embrittlement behavior in Fe–Mn–C–Cu TWIP steel , 2015 .

[12]  D. Dye,et al.  The effect of grain size on the twin initiation stress in a TWIP steel , 2015 .

[13]  N. Stepanov,et al.  Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy , 2015 .

[14]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[15]  D. Suh,et al.  Hydrogen and aluminium in high-manganese twinning-induced plasticity steel , 2014 .

[16]  Young‐kook Lee,et al.  The Effect of Pre-Strain on the Resistance to Hydrogen Embrittlement in 316L Austenitic Stainless Steel , 2014 .

[17]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[18]  D. Suh,et al.  Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Young-Soo Chun,et al.  Caliber-rolled TWIP steel for high-strength wire rods with enhanced hydrogen-delayed fracture resistance , 2012 .

[20]  S. K. Kim,et al.  Hydrogen effects on cathodically charged twinning-induced plasticity steel , 2012 .

[21]  J. Frenzel,et al.  The effectiveness of coincidence site lattice criteria in predicting creep cavitation resistance , 2012, Journal of Materials Science.

[22]  M. Calcagnotto,et al.  Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD , 2010 .

[23]  Young‐kook Lee,et al.  Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel , 2009 .

[24]  R. Ritchie,et al.  Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials , 2009 .

[25]  Chun‐Sing Lee,et al.  Microstructural influences on hydrogen delayed fracture of high strength steels , 2009 .

[26]  K. Tsuzaki,et al.  Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel , 2005 .

[27]  R. Dayal,et al.  Dependence of the hydrogen permeation in stainless steel on carbon content, heat treatment and cold work , 2000 .

[28]  M. Nagumo,et al.  Nature of hydrogen trapping sites in steels induced by plastic deformation , 1999 .

[29]  Pravin Kumar,et al.  Determination of hydrogen diffusivity in austenitic stainless steels by subscale microhardness profiling , 1997 .

[30]  C. Altstetter,et al.  Effects of deformation on hydrogen permeation in austenitic stainless steels , 1986 .

[31]  R. J. Richards,et al.  Hydrogen transport by dislocations , 1976, Metallurgical and Materials Transactions A.