C0 elements for generalized indefinite Maxwell equations

In this paper we develop the C0 finite element method for a generalized curlcurl-grad div indefinite Maxwell problem in a Lipschitz domain such as nonconvex polygon for which the solution of the problem may be nonsmooth and only have the Hr regularity for some r < 1. The ingredients of our method are that two ‘mass-lumping’ L2 projectors are applied to curl and div operators in the problem and that C0 linear element or isoparametric bilinear element enriched with one element-bubble on every triangle element or with two-element-bubbles on every quadrilateral element, respectively, is employed for each component of the nonsmooth solution. Due to the fact that the element-bubbles can be statically eliminated at element levels, our method is essentially three-nodes or four-nodes C0 Lagrange element method. With two Fortin-type interpolations established, a very technical duality argument is elaborated to estimate the error for the indefinite problem. For the nonsmooth solution having the Hr regularity where r may vary in the interval [0, 1), we obtain the error bound $${{\mathcal O}(h^r)}$$ in an energy norm. Some numerical experiments are performed to confirm the theoretical error bounds.

[1]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[2]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[3]  Long Chen FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS , 2010 .

[4]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[7]  V. Girault A local projection operator for quadrilateral finite elements , 1995 .

[8]  Thomas A. Manteuffel,et al.  FOSLL∗ Method for the Eddy Current Problem with Three-Dimensional Edge Singularities , 2007, SIAM J. Numer. Anal..

[9]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[10]  R. Hiptmair,et al.  Acta Numerica 2002: Finite elements in computational electromagnetism , 2002 .

[11]  Susanne C. Brenner,et al.  A Locally Divergence-Free Interior Penalty Method for Two-Dimensional Curl-Curl Problems , 2008, SIAM J. Numer. Anal..

[12]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[13]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[14]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[15]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[16]  E. Sonnendrücker,et al.  Resolution of the Maxwell equations in a domain with reentrant corners , 1998 .

[17]  Leszek Demkowicz,et al.  Finite Element Methods for Maxwell Equations , 2007 .

[18]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[19]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[20]  M. Costabel,et al.  Maxwell and Lamé eigenvalues on polyhedra , 1999 .

[21]  Roger Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[22]  Christophe Hazard,et al.  A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics , 2002, SIAM J. Numer. Anal..

[23]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[24]  Feng Jia,et al.  The Local L2 Projected C0 Finite Element Method for Maxwell Problem , 2009, SIAM J. Numer. Anal..

[25]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[26]  G. Burton Sobolev Spaces , 2013 .

[27]  Huo-Yuan Duan,et al.  Nonconforming elements in least-squares mixed finite element methods , 2004, Math. Comput..

[28]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[29]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[30]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[31]  Annalisa Buffa,et al.  Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements , 2009, Numerische Mathematik.

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[34]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[35]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[36]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[37]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[38]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[39]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[40]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[41]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.